Download Free Radioactive Material Book in PDF and EPUB Free Download. You can read online Radioactive Material and write the review.

Naturally occurring radionuclides are found throughout the earth's crust, and they form part of the natural background of radiation to which all humans are exposed. Many human activities-such as mining and milling of ores, extraction of petroleum products, use of groundwater for domestic purposes, and living in houses-alter the natural background of radiation either by moving naturally occurring radionuclides from inaccessible locations to locations where humans are present or by concentrating the radionuclides in the exposure environment. Such alterations of the natural environment can increase, sometimes substantially, radiation exposures of the public. Exposures of the public to naturally occurring radioactive materials (NORM) that result from human activities that alter the natural environment can be subjected to regulatory control, at least to some degree. The regulation of public exposures to such technologically enhanced naturally occurring radioactive materials (TENORM) by the US Environmental Protection Agency (EPA) and other regulatory and advisory organizations is the subject of this study by the National Research Council's Committee on the Evaluation of EPA Guidelines for Exposures to Naturally Occurring Radioactive Materials.
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Fukushima Accident: 10 Years After evaluates the post-Fukushima accident situation with up-to-date information, emphasizing radionuclide impacts on the terrestrial and marine environments, and comparing them to the pre-Fukushima accident levels of radionuclides in the environment. This is based on scientific results, as well as knowledge gathered from literature to provide current information on the present status, summarize 10 years of data on the Fukushima accident, and describe the present situation in the local, regional, and global time and space scales. It provides data on radioactivity released into the atmosphere and the ocean, the distribution of radionuclides in the world atmosphere and oceans, and their impact on the total environment, including assessments of radiation doses in Japanese and world populations from consumption of terrestrial food and seafood. It goes on to describe future aspects of the radioactive contamination of these environments and the health implications. This book informs environmental scientists, academics, and researchers in environmental science and nuclear energy as well as postgraduate students in the field of environmental science, radioactivity, and nuclear energy, on the present situation of radioactive contamination of Japan and in the world. Covers the Fukushima radioactivity impact on humans and the environment from the accident to the present Provides full information on radiation doses to Japanese citizens and biota, as well as to the world population, 10 years after the Fukushima accident Details transport of radionuclides in terrestrial and ocean environments, describing how to apply this information to ocean global circulation models and quantify radionuclide contamination of coastal regions Assesses future trends in radioactive contamination of the Fukushima site
Naturally Occurring Radioactive Materials in Construction (COST Action NORM4Building) discusses the depletion of energy resources and raw materials and its huge impact not only on the building market, but also in the development of new synthetic building materials, whereby the reuse of various (waste) residue streams becomes a necessity. It is based on the outcome of COST Action TU 1301, where scientists, regulators, and representatives from industry have come together to present new findings, sharing knowledge, experiences, and technologies to stimulate research on the reuse of residues containing enhanced concentrates of natural radionuclides (NORM) in tailor-made building materials. Chapters address legislative issues, measurement, and assessment of building materials, physical and chemical aspects, from raw materials, to residues with enhanced concentrations of natural radionuclides (NORM), processes, building products containing NORM, and end-of-life and reuse requirements. - Presents a holistic approach in developing new reuse pathways involving experts on different (technical, chemical, physical, ecological, economical and radiological) aspects of materials - Provides practical guidance that address questions and comments regarding the EU-BSS standards linked to the processing of NORM in building materials - Investigates realistic legislative scenarios - Primarily aimed at industry and actors linked to the industry, but also researchers - Contains a strong international network of expert authors and internal reviewers for each chapter
Does the identification number 60 indicate a toxic substance or a flammable solid, in the molten state at an elevated temperature? Does the identification number 1035 indicate ethane or butane? What is the difference between natural gas transmission pipelines and natural gas distribution pipelines? If you came upon an overturned truck on the highway that was leaking, would you be able to identify if it was hazardous and know what steps to take? Questions like these and more are answered in the Emergency Response Guidebook. Learn how to identify symbols for and vehicles carrying toxic, flammable, explosive, radioactive, or otherwise harmful substances and how to respond once an incident involving those substances has been identified. Always be prepared in situations that are unfamiliar and dangerous and know how to rectify them. Keeping this guide around at all times will ensure that, if you were to come upon a transportation situation involving hazardous substances or dangerous goods, you will be able to help keep others and yourself out of danger. With color-coded pages for quick and easy reference, this is the official manual used by first responders in the United States and Canada for transportation incidents involving dangerous goods or hazardous materials.
Safe and Secure Transport and Storage of Radioactive Materials reviews best practice and emerging techniques in this area. The transport of radioactive materials is an essential operation in the nuclear industry, without which the generation of nuclear power would not be possible. Radioactive materials also often need to be stored pending use, treatment, or disposal. Given the nature of radioactive materials, it is paramount that transport and storage methods are both safe and secure. A vital guide for managers and general managers in the nuclear power and transport industries, this book covers topics including package design, safety, security, mechanical performance, radiation protection and shielding, thermal performance, uranium ore, fresh fuel, uranium hexafluoride, MOX, plutonium, and more. - Uniquely comprehensive and systematic coverage of the packaging, transport, and storage of radioactive materials - Section devoted to spent nuclear fuels - Expert team of authors and editors
In 1989 the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (the London Convention 1972) requested that the IAEA undertake the preparation of a global inventory of radioactive materials entering the marine environment from all origins. The IAEA subsequently established a global inventory which included information officially reported in or obtained from open literature and confirmed by the countries involved, on (i) the dumping at sea of radioactive waste; and (ii) marine accidents and losses involving radioactive materials. The inventory is intended as a centralized information base against which the impact of specific sources of radioactive material entering the marine environment can be assessed and compared. In 2006 the IAEA received the request to update those inventories. The present publication includes additional information provided recently by some IAEA Member States and contracting parties to the London Convention 1972 and Protocol 1996 within a process of updating the inventory which concluded in 2014, together with the information contained in previous IAEA publications. A CD ROM provides tables, maps and a database with detailed information.
Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.
Considers the key strategic factors involved in planning for the decommissioning of a nuclear facility which can cover a range of topics from technical matters to socio-economic and environmental issues. This report considers the impact of factors on the strategy selection and how factors in combination can be used to select the optimum strategy.