Download Free Radio Wave Propagation In The Marine Boundary Layer Book in PDF and EPUB Free Download. You can read online Radio Wave Propagation In The Marine Boundary Layer and write the review.

Based on his many years of professional experience at leading companies in communications technology, the author describes an analytical solution for wave propagation over the sea surface in an atmospheric boundary layer. His approach allows the detailed analysis of combined effects of diffraction, refraction and scattering in random media. While specific applications covered are targeted at radio wave propagation over the sea surface, a similar approach is applicable to many problems in underwater acoustics, seismology, solid matter physics and astrophysics.
An important contribution to the literature that introduces powerful new methods for modeling and simulating radio wave propagation A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various virtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenarios typifying the differing effects of various environments on radio-wave propagation. This valuable text: Addresses groundwave and surface wave propagation Explains radar applications in terms of parabolic equation modeling and simulation approaches Introduces several simple and sophisticated MATLAB scripts Teaches applications that work with a wide range of electromagnetic, acoustic and optical wave propagation modeling Presents the material in a quick-reference format ideal for busy researchers and engineers Radio Wave Propagation and Parabolic Equation Modeling is a critical resource forelectrical, electronics, communication, and computer engineers working on industrial and military applications that rely on the directed propagation of radio waves. It is also a useful reference for advanced engineering students and academic researchers.
The journal Boundary-Layer Meteorology was started in 1970 and has become the premier vehicle for the publication of research papers in its field. Dr R.E. Munn served as Editor-in-Chief until recently. The special 25th Anniversary volume, on which this book is based, was compiled from review and other articles solicited and selected as a `Festschrift' to honour Ted Munn's achievement as editor of the journal over that time. Articles by leading contributors to the field include reviews of field studies (Askervein, HEXOS, Cabauw) and their impacts; numerical modelling (large-eddy simulation of the surface layer, frontal structures); analyses and critical discussions (of the von Karman constant, bulk aerodynamic formulations, air-sea interaction, vegetation canopies); and reviews or previews of progress in our understanding of the atmospheric boundary layer, turbulence simulation, Lagrangian descriptions of turbulent diffusion and remote sensing of the boundary layer. The collection provides an excellent perspective on the state of the subject and where it is headed. It should provide fascinating and stimulating reading for researchers and students of boundary-layer meteorology and related areas.
With very few exceptions, geodetic measurements use electro magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow ing parameters of the electromagnetic wave are measured: ampli tude, phase, angle-of-arrival, polarisation and frequency. Ac curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter restrial and space applications. Instrumental accuracies are al ready below the atmospherically induced limitations, and thus the accuracy demands on the geodetic refraction solutions are entering a new magnitude zone. This monograph is primarily devoted to the properties of the at mospheric effects on various geodetic measurements and to their evaluation. Ten review papers cover the most pressing aspects of the atmospheric effects on geodetic measurement~. Ttiese state of-the art papers were written by eminent specialists in their respective research fields.