Download Free Radiations From Radioactive Substances Book in PDF and EPUB Free Download. You can read online Radiations From Radioactive Substances and write the review.

A definitive account, first published in 1930, of research into radiation leading to the discovery of the planetary atomic structure.
Naturally occurring radionuclides are found throughout the earth's crust, and they form part of the natural background of radiation to which all humans are exposed. Many human activities-such as mining and milling of ores, extraction of petroleum products, use of groundwater for domestic purposes, and living in houses-alter the natural background of radiation either by moving naturally occurring radionuclides from inaccessible locations to locations where humans are present or by concentrating the radionuclides in the exposure environment. Such alterations of the natural environment can increase, sometimes substantially, radiation exposures of the public. Exposures of the public to naturally occurring radioactive materials (NORM) that result from human activities that alter the natural environment can be subjected to regulatory control, at least to some degree. The regulation of public exposures to such technologically enhanced naturally occurring radioactive materials (TENORM) by the US Environmental Protection Agency (EPA) and other regulatory and advisory organizations is the subject of this study by the National Research Council's Committee on the Evaluation of EPA Guidelines for Exposures to Naturally Occurring Radioactive Materials.
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.
Fundamentals of Radiation and Chemical Safety covers the effects and mechanisms involved in radiation and chemical exposure on humans. The mechanisms and effects of these damaging factors have many aspects in common, as do their research methodology and the methods used for data processing. In many cases of these types of exposures the same final effect can also be noted: Cancer. Low doses of radiation and small doses of chemical exposure are continuously active and they could influence the entire population. The analysis of these two main source hazards on the lives of the human population is covered here for the first time in a single volume determining and demonstrating their common basis. Fundamentals of Radiation and Chemical Safety includes the necessary knowledge from nuclear physics, chemistry and biology, as well the methods of processing the experimental results. This title focuses on the effects of low radiation dosage and chemical hormesis as well as the hazards associated with, and safety precautions in radiation and chemicals, rather than the more commonly noted safety issues high level emergencies and disasters of this type. - Brings together, for the first time, the problems of radiation and chemical safety on a common biophysical basis. - Relates hazards caused by ionizing radiation and chemicals and discusses the common effective mechanisms - Outlines common methodology and data processing between radiation and regular chemical hazards - Concerns primarily with low levels of radiation and chemical exposure
The Radiation Exposure Compensation Act (RECA) was set up by Congress in 1990 to compensate people who have been diagnosed with specified cancers and chronic diseases that could have resulted from exposure to nuclear-weapons tests at various U.S. test sites. Eligible claimants include civilian onsite participants, downwinders who lived in areas currently designated by RECA, and uranium workers and ore transporters who meet specified residence or exposure criteria. The Health Resources and Services Administration (HRSA), which oversees the screening, education, and referral services program for RECA populations, asked the National Academies to review its program and assess whether new scientific information could be used to improve its program and determine if additional populations or geographic areas should be covered under RECA. The report recommends Congress should establish a new science-based process using a method called "probability of causation/assigned share" (PC/AS) to determine eligibility for compensation. Because fallout may have been higher for people outside RECA-designated areas, the new PC/AS process should apply to all residents of the continental US, Alaska, Hawaii, and overseas US territories who have been diagnosed with specific RECA-compensable diseases and who may have been exposed, even in utero, to radiation from U.S. nuclear-weapons testing fallout. However, because the risks of radiation-induced disease are generally low at the exposure levels of concern in RECA populations, in most cases it is unlikely that exposure to radioactive fallout was a substantial contributing cause of cancer.