Download Free Radiation Protection Design Guidelines For 01 100 Mev Particle Accelerator Facilities Book in PDF and EPUB Free Download. You can read online Radiation Protection Design Guidelines For 01 100 Mev Particle Accelerator Facilities and write the review.

The purpose of this Report is to provide design guidelines for radiation protection, and to identify those aspects of radiological safety that are of major, or even unique, importance to the operation of particle accelerator installations and to suggest methods by which safe operation may be achieved. The report is written from an engineering physics viewpoint and is intended to be useful to those engaged in the design and operation of accelerators, particularly in smaller institutions and organizations that do not have a large radiological-protection staff.
CRC Handbook of Management of Radiation Protection Programs, 2nd Edition, is unique in that it offers practical guidance for managing various aspects of radiation protection programs ranging from the daily operation of a health physics office to the preparation of radiation experts for court appearances as professional witnesses. The book also covers such topics as organization and management of nonionizing radiation safety programs (with special emphasis on laser safety programs) and management of radioactive waste, personnel monitoring programs, radiation accident victims, internal exposure, relative radiotoxicity and radiation therapy patients. Other chapters discuss handling radiation accidents and education and training requirements for radiation protection. Legal aspects covered in the book include the history of radiation court cases, legal implications of record keeping, and preparation for court appearances. CRC Handbook of Management of Radiation Protection Programs, 2nd Edition will be a valuable reference resource for medical and health physicists, industrial hygienists, physicians, nuclear engineers, radiation protection regulators, radiation emergency management agents, radiation safety committees, and managers of facilities using ionizing and nonionizing radiation sources.
The book covers all the radiation safety aspects while working with unsealed radionuclides. Radiation safety plays a significant role in routine nuclear medicine practices and is necessary to protect occupational workers, patients, members of the general public and the environment. A fair knowledge of radiation safety is expected from all nuclear medicine professionals. Chapters include basics of radiation physics, biological bases of radiation protection, planning and design of nuclear medicine facilities, cyclotron and high dose therapy facilities, radiation safety considerations in nuclear medicine, cyclotron while preparing radiopharmaceuticals. It also includes the working mechanism of radiation detectors, quality assurance of positron emission tomography (PET) and gamma camera, including single photon emission computed tomography (SPECT), emergency preparedness plan, nuclear medicine and CT dosimetry, transport regulations, the role of national regulatory authorities and radioactive waste management. The last chapter provides probable model questions asked in the radiological safety officer certification examination and includes 250 multiple-choice questions (MCQs), 100 true or false, 60 fill in the blanks, and 40 match the following questions. The book is written in a simple language for a better understanding of the occupational workers of any grade. It serves as reference material for nuclear medicine professionals on radiation safety, related to planning, quality assurance, dosimetry and various regulations pertaining to nuclear medicine. It is a ready reckoner for the students pursuing a degree/diploma in nuclear medicine and preparing for certification courses in radiation safety to understand the subject matter along with options to attempt practice questions.
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.