Download Free Radiation Chemistry Of Biopolymers Book in PDF and EPUB Free Download. You can read online Radiation Chemistry Of Biopolymers and write the review.

The Radiation Chemistry of Macromolecules is the first from a two-volume series aiming to contribute to the radiation chemistry in general. The chapters in this volume are divided into two major parts, where the first part deals with the basic processes and theory, while the second part tackles experimental techniques and applications to polyethylene. Part I focuses on the discussion on general principles of radiation effects; fundamental concepts on energy transfer; and the theory of free radicals. The subject of polymers is discussed thoroughly in several chapters including its molecular mobilities and electrical conductivity. Part II presents experimental techniques and a description of the radiation chemistry of a single polymer. This part also includes a discussion on the morphology of polyethylene and free radicals in irradiated polyethylene. This book is an important reference to students and scientists in the field of radiation chemistry of macromolecules.
This monograph—based on the authors course lectures on radiation chemistry of biopolymers—deals with the primary stages of radiation-chemical transformation of main biopolymers. Special attention is given to radiolysis of their aqueous solutions, formation and conversion mechanisms of macroradicals, synthesized in acts of solvent radical interaction with biopolymer molecules and in their natural complexes.
Biopolymers and biodegradable plastics are finding new applications in various sectors, from packaging, to medical, automotive and many more. As synthetic plastics are increasingly replaced by their bioplastic equivalents, engineers are facing new challenges including processing, costs, environmental sustainability and – ultimately – developing successful products. Biopolymers: Processing and Products, the second book of a trilogy dedicated to biopolymers, gives a detailed insight into all aspects of processing, seamlessly linking the science of biopolymers to the latest trends in the development of new products. Processes covered in the book include blending, compounding, treatment, and shaping, as well as the formation of biocomposites. Biopolymer coatings and adhesives are also investigated. This book unique in its coverage contains information retrieved mainly from patents, which form the bulk of the book. The coverage of processing will help engineers and designers to improve output and efficiency of every stage of the product development process, and will form an indispensable tool in selecting the right biopolymer and processing technique for any given application, covering medical, automotive, food packaging and more. It will assist also engineers, material scientists and researchers to improve existing biopolymer processes and deliver better products at lower cost. - Multi-disciplinary approach and critical presentation of all available processing techniques and new products of biopolymers - Contains information not to be found in any other book - Self-contained chapters
The Radiation Chemistry of Macromolecules, Volume II is a collection of papers that discusses radiation chemistry of specific systems. Part 1 deals with radiation chemistry of substituted vinyl polymers, particularly polypropylene (PP) as its structure is intermediate between polyethylene and polyisobutylene. This part also discusses polypropylene oxide (PPOx) for it can be prepared in the atactic, isotactic, and optically active forms. One paper focuses on the fundamental chemical processes and the changes in physical properties that give rise to many different applications of polystyrene. Another paper analyzes poly(methyl methacrylate) and poly(isobutylene)—two important polymers of nongelling substances subject to radiation. Part 2 describes the radiation chemistry of some miscellaneous polymers including the formation of free radicals and their termination. One paper also considers the radiation chemistry of polytetrafluoroethyle (PTFE), which is widely used in industry. Part 3 discusses the effect of radiation on oxidation, mechanical properties, and physical state of polymers. Part 4 addresses macromolecules, particularly the radiation chemistry of biopolymers because of their role in radiation chemistry. The damage done to biopolymers through radiation can affect the responses of living organisms to ionizing radiation. This book can prove valuable to scientists and researchers in the fields of nuclear biology, nuclear science, microchemistry, and cellular biology.
Radiation-Processed Polysaccharides: Emerging Roles in Agriculture is the first book to focus exclusively on this emerging and important option for reducing the overuse and negative impact of agrochemicals in agriculture. Among practices being developed for effective and eco-friendly plant growth regulators in crop production, using radiation-processed polysaccharides (RPPs) is a promising technique. Comprised of chapters from diverse areas of plant science, including agriculture, agronomy, biotechnology, nanotechnology, molecular biology, and radiation agriculture, this book provides insights into the practical application of RPPs and inspires further research toward sustainable and efficient agricultural production. Polysaccharides (sodium alginate, carrageenan, chitosan and others) in their depolymerized state are increasingly important to agriculture based on their unique biological properties, biocompatibility, biodegradability and non-toxicity. Understanding the impact of RPPs on the plant phenotype, translocation of nutrients from source to sink, signal processing, and crosstalk helps improve the applicability of RPPs and sustainable agricultural yield. Presents the latest application of RPPs for improved plant production Includes insights for abiotic stress, biotechnology, nanotechnology and molecular application Explores the efficiency of natural polysaccharides as plant growth promoters
This volume is a review of the trends in the field of radiation chemistry research. It covers a broad spectrum of topics, ranging from the historical perspective, instrumentation of accelerators in the nanosecond to femtosecond region, through the use of radiation chemical methods in the study of antioxidants and nanomaterials, radiation-induced DNA damage by ionizing radiation involving both direct and indirect effects, to ultrafast events in free electron transfer, radiation-induced processes at solid-liquid interfaces and the recent work on infrared spectroscopy and radiation chemistry. The book is unique in that it covers a wide spectrum of topics that will be of great interest to beginners as well as experts. Recent data on ultrafast phenomena from the recently established world-class laser-driven accelerators facilities in the US, France and Japan are reviewed.
Unlike many other references, Radiation-Chemical Processes in Solid Phase analyzes experimental data on radiolysis in terms of solid-state physics. It traces the effect exerted by media from primary processes of radiation-substance interaction to final products. The authors consider the main chemically active elementary excitations arising under irradiation of solids and discuss the mechanisms of chemical reactions induced by them. They present the general principles of solid-state and molecular physics, and cover numerous radiation-chemical processes.
Biopolymeric Nanomaterials: Fundamentals and Applications outlines the fundamental design concepts and emerging applications of biopolymeric nanomaterials. The book also provides information on emerging applications of biopolymeric nanomaterials, including in biomedicine, manufacturing and water purification, as well as assessing their physical, chemical and biological properties. This is an important reference source for materials scientists, engineers and biomedical scientists who are seeking to increase their understanding of how polymeric nanomaterials are being used for a range of biomedical and industrial applications. Biopolymeric nanomaterials refer to biocompatible nanomaterials, consisting of biopolymers, such as protein (silk, collagen, gelatin, ß-casein, zein, and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch, and heparin). Biopolymeric nanomaterials may be used as i) delivery systems for bioactive compounds in food application, (ii) for delivery of therapeutic molecules (drugs and genes), or for (iii) tissue engineering. Provides information on the design concepts and synthesis of biopolymeric nanomaterials in biomedical and industrial applications Highlights the major properties and processing methods for biopolymeric nanomaterials Assesses the major challenges of producing biopolymeric nanomaterials on an industrial scale
Radiation Chemistry of Carbohydrates is a five-chapter book that deals with the detailed analysis of experimental data on the radiation chemistry of carbohydrates. After introducing the focus of the study, this book discusses the radiation chemistry of water and aqueous solutions. This discussion is followed by a topic on the general approaches and methods of investigation of the radiolysis of carbohydrates. This text also looks into the radiolysis of various classes of carbohydrates and into the major transformations of carbohydrates induced by irradiation. This book will be helpful for students and experts in the field of chemistry and related disciplines.