Download Free Radiation And Climate Book in PDF and EPUB Free Download. You can read online Radiation And Climate and write the review.

This new book describes the basic physics of solar and infrared radiation in the atmosphere. Radiation theory is related to the development of climate prediction models, and to measurement techniques for monitoring the Earth's energy budget and making remote sensing observations from satellites.
Numerous studies report that ultraviolet (UV) radiation is harmful to living organisms and detrimental to human health. Growing concerns regarding the increased levels of UV-B radiation that reach the earth's surface have led to the development of ground- and space-based measurement programs. Further study is needed on the measurement, modeling, and effects of UV radiation. The chapters of this book describe the research conducted across the globe over the past three decades in the areas of: (1) current and predicted levels of UV radiation and its associated impact on ecosystems and human health, as well as economic and social implications; (2) new developments in UV instrumentation, advances in calibration (ground- and satellite-based), measurement methods, modeling efforts, and their applications; and (3) the effects of global climate change on UV radiation. Dr. Wei Gao is a Senior Research Scientist and the Director of the USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University. Dr. Gao is a SPIE fellow and serves as the Editor-in-Chief for the Journal of Applied Remote Sensing. Dr. Daniel L. Schmoldt is the National Program Leader for instrumentation and sensors at the National Institute of Food and Agriculture (NIFA) of the U.S. Department of Agriculture. Dr. Schmoldt served as joint Editor-in-Chief of the journal, Computers & Electronics in Agriculture, from 1997 to 2004. Dr. James R. Slusser retired in 2007 from the USDA UV-B Monitoring and Research Program at Colorado State University. He was active in the Society of Photo-Optical Instrumentation Engineers, the American Geophysical Union, and the American Meteorological Society. Dr. Slusser is currently pursuing his interests in solar energy and atmospheric transmission.
Engineering the Climate: The Ethics of Solar Radiation Management discusses the ethical issues associated with deliberately engineering a cooler climate to combat global warming. Climate engineering (also known as geoengineering) has recently experienced a surge of interest given the growing likelihood that the global community will fail to limit the temperature increases associated with greenhouse gases to safe levels. Deliberate manipulation of solar radiation to combat climate change is an exciting and hopeful technical prospect, promising great benefits to those who are in line to suffer most through climate change. At the same time, the prospect of geoengineering creates huge controversy. Taking intentional control of earth’s climate would be an unprecedented step in environmental management, raising a number of difficult ethical questions. One particular form of geoengineering, solar radiation management (SRM), is known to be relatively cheap and capable of bringing down global temperatures very rapidly. However, the complexity of the climate system creates considerable uncertainty about the precise nature of SRM’s effects in different regions. The ethical issues raised by the prospect of SRM are both complex and thorny. They include: 1) the uncertainty of SRM’s effects on precipitation patterns, 2) the challenge of proper global participation in decision-making, 3) the legitimacy of intentionally manipulating the global climate system in the first place, 4) the potential to sidestep the issue of dealing with greenhouse gas emissions, and, 5) the lasting effects on future generations. It has been widely acknowledged that a sustained and scholarly treatment of the ethics of SRM is necessary before it will be possible to make fair and just decisions about whether (or how) to proceed. This book, including essays by 13 experts in the field of ethics of geoengineering, is intended to go some distance towards providing that treatment.
Climate change is occurring, is caused largely by human activities, and poses significant risks for-and in many cases is already affecting-a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs.
Our current climate is strongly influenced by atmospheric composition, and changes in this composition are leading to climate change. Physics of Radiation and Climate takes a look at how the outward flow of longwave or terrestrial radiation is affected by the complexities of the atmosphere's molecular spectroscopy. This book examines the planet in
The first book to focus on the legal aspects of climate engineering, making recommendations for future laws and governance.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.
The Earth's climate system depends entirely on the Sun for its energy. Solar radiation warms the atmosphere and is fundamental to atmospheric composition, while the distribution of solar heating across the planet produces global wind patterns and contributes to the formation of clouds, storms, and rainfall. The Sun’s Influence on Climate provides an unparalleled introduction to this vitally important relationship. This accessible primer covers the basic properties of the Earth’s climate system, the structure and behavior of the Sun, and the absorption of solar radiation in the atmosphere. It explains how solar activity varies and how these variations affect the Earth’s environment, from long-term paleoclimate effects to century timescales in the context of human-induced climate change, and from signals of the 11-year sunspot cycle to the impacts of solar emissions on space weather in our planet’s upper atmosphere. Written by two of the leading authorities on the subject, The Sun’s Influence on Climate is an essential primer for students and nonspecialists alike.
An Introduction to Atmospheric Radiation