Download Free Radiation Acoustics Book in PDF and EPUB Free Download. You can read online Radiation Acoustics and write the review.

Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s. The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearly demonstrate the validity of the thermoradiation theory. The book concludes with discussions on applications, including the large-scale DUMAND and GENIUS projects now on the horizon. Radiation acoustics holds enormous potential for applications in areas such as microelectronics, geophysics, and astrophysics. This book offers a unique opportunity to benefit from the approach and extensive experience of author Leonid N. Lyamshev, who in this, his last book, shows how he left an indelible mark on the world of acoustics.
Fourier Acoustics develops the theory of sound radiation completely from the viewpoint of Fourier analysis. This powerful perspective of sound radiation provides the reader with a comprehensive and practical understanding which will enable him or her to diagnose and solve sound and vibration problems of the 21st century. As a result of this perspective, Fourier Acoustics is able to present thoroughly and simply, for the first time in book form, the theory of nearfield acoustical holography, an important technique which has revolutionized the measurement of sound. The book includes: The physics of wave propagation and sound radiation in homogeneous media Acoustics, such as radiation of sound, and radiation from vibrating surfaces Inverse problems, for example the thorough development of the theory of nearfield acoustical holography Mathematics of specialized functions, such as spherical harmonics The author is an internationally recognized acoustician whose pioneering research in the field of nearfield acoustical holography has impacted acoustics research and development throughout the world. Dr. Williams' research has been formally recognized by NRL as one of its most innovative technologies over the past 75 years. Relying little on material outside the book, Fourier Acoustics will be invaluable as a graduate level text as well as a reference for researchers in academia and industry. The book is unique amongst acoustics texts, it is well illustrated and it includes exercises to enforce the theory.
In this volume, the author explains a generalized theory of radiation acoustic phenomena. This concise and comprehensive introduction to the field of radiation acoustics considers the nonlinear and non-thermal mechanisms of sound generation as well as the fundamental equations of radiation acoustics. The author also explores topics beyond theory an
In this volume, the author explains a generalized theory of radiation acoustic phenomena. This concise and comprehensive introduction to the field of radiation acoustics considers the nonlinear and non-thermal mechanisms of sound generation as well as the fundamental equations of radiation acoustics. The author also explores topics beyond theory and postulates some applications of radiation acoustic effects. Introduction to Radiation Acoustics is ideal for graduate students and specialists in the fields of accelerator techniques, acoustics, radiotherapeutics, and elementary particle physics.
Intended a both a textbook and a reference, Fourier Acoustics develops the theory of sound radiation uniquely from the viewpoint of Fourier Analysis. This powerful perspective of sound radiation provides the reader with a comprehensive and practical understanding which will enable him or her to diagnose and solve sound and vibration problems in the 21st Century. As a result of this perspective, Fourier Acoustics is able to present thoroughly and simply, for the first time in book form, the theory of nearfield acoustical holography, an important technique which has revolutionised the measurement of sound. Relying little on material outside the book, Fourier Acoustics will be invaluable as a graduate level text as well as a reference for researchers in academia and industry. The physics of wave propogation and sound vibration in homogeneous media Acoustics, such as radiation of sound, and radiation from vibrating surfaces Inverse problems, such as the theory of nearfield acoustical holography Mathematics of specialized functions, such as spherical harmonics
This application-orientated collection of formulas has been written by applied scientists and industrial engineers for design professionals and students who work in engineering acoustics. It is subdivided into the most important fields of applied acoustics, each dealing with a well-defined type of problem. It provides easy and rapid access to profound and comprehensive information. In order to keep the text as concise as possible, the derivation of a formula is described as briefly as possible and the reader is referred to the original source. Besides the formulas, useful principles and computational procedures are given.
Underwater Scattering and Radiation describes the relevant theoretical foundations of underwater scattering and radiation. Acoustic scattering from elastic solids is discussed, and variational formulations in acoustic radiation and scattering are presented. Surface waves and quasi-cylindrical modes are also explored, along with the Helmholtz-Kirchhoff integral corollaries. Comprised of two chapters, this volume begins with a comprehensive account of scattering by elastic objects, focusing on the classic idealized shapes of spheres and infinite cylinders. The reader is introduced to important concepts such as normal modes, the S-matrix, and the T-matrix as well as resonances, whispering gallery modes, Franz modes, and Stoneley waves. Subsequent sections describe methods for treating scattering by elastic bodies of more general shapes. The T-matrix formalism is discussed and then applied to spheroidal scatterers and finite cylinders. The second chapter analyzes how variational principles can be used in acoustics, with the choice of topics directed toward applications to underwater acoustic radiation and scattering. This book will be of interest to physicists.