Download Free Radar Signal Analysis And Processing Using Matlab Book in PDF and EPUB Free Download. You can read online Radar Signal Analysis And Processing Using Matlab and write the review.

Offering radar-related software for the analysis and design of radar waveform and signal processing, Radar Signal Analysis and Processing Using MATLAB provides a comprehensive source of theoretical and practical information on radar signals, signal analysis, and radar signal processing with companion MATLAB code. Aft
Simulation is integral to the successful design of modern radar systems, and there is arguably no better software for this purpose than MATLAB. But software and the ability to use it does not guarantee success. One must also: Understand radar operations and design philosophy Know how to select the radar parameters to meet the design req
Developed from the author's graduate-level courses, the first edition of this book filled the need for a comprehensive, self-contained, and hands-on treatment of radar systems analysis and design. It quickly became a bestseller and was widely adopted by many professors. The second edition built on this successful format by rearranging and updating
Advances in DSP (digital signal processing) have radically altered the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging
Signal Processing for Multistatic Radar Systems: Adaptive Waveform Selection, Optimal Geometries and Pseudolinear Tracking Algorithms addresses three important aspects of signal processing for multistatic radar systems, including adaptive waveform selection, optimal geometries and pseudolinear tracking algorithms. A key theme of the book is performance optimization for multistatic target tracking and localization via waveform adaptation, geometry optimization and tracking algorithm design. Chapters contain detailed mathematical derivations and algorithmic development that are accompanied by simulation examples and associated MATLAB codes. This book is an ideal resource for university researchers and industry engineers in radar, radar signal processing and communications engineering. - Develops waveform selection algorithms in a multistatic radar setting to optimize target tracking performance - Assesses the optimality of a given target-sensor geometry and designs optimal geometries for target localization using mobile sensors - Gives an understanding of low-complexity and high-performance pseudolinear estimation algorithms for target localization and tracking in multistatic radar systems - Contains the MATLAB codes for the examples used in the book
Practical Biomedical Signal Analysis Using MATLAB® presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data. The first several chapters of the text describe signal analysis techniques—including the newest and most advanced methods—in an easy and accessible way. MATLAB routines are listed when available and freely available software is discussed where appropriate. The final chapter explores the application of the methods to a broad range of biomedical signals, highlighting problems encountered in practice. A unified overview of the field, this book explains how to properly use signal processing techniques for biomedical applications and avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods.
A text and general reference on the design and analysis of radar signals As radar technology evolves to encompass a growing spectrum of applications in military, aerospace, automotive, and other sectors, innovations in digital signal processing have risen to meet the demand. Presenting a long overdue, up-to-date, dedicated resource on radar signals, the authors fill a critical gap in radar technology literature. Radar Signals features in-depth coverage of the most prevalent classical and modern radar signals used today, as well as new signal concepts developed in recent years. Inclusion of key MATLAB software codes throughout the book demonstrates how they dramatically simplify the process of describing and analyzing complex signals. Topics covered include: * Matched filter and ambiguity function concepts * Basic radar signals, with both analytical and numerical analysis * Frequency modulated and phase-coded pulses * Complete discussion of band-limiting schemes * Coherent LFM pulse trains-the most popular radar signal * Diversity in pulse trains, including stepped frequency pulses * Continuous-wave signals * Multicarrier phase-coded signals Combining lucid explanation, preferred signal tables, MATLAB codes, and problem sets in each chapter, Radar Signals is an essential reference for professionals-and a systematic tutorial for any seeking to broaden their knowledge base in this dynamic field.
Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource The newly revised Second Edition of Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. The author covers a wide variety of topics, including: Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar The theoretical and practical aspects of signal processing algorithms used in ISAR imaging The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging, Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.
An up-to-date analysis of the SAR wavefront reconstruction signal theory and its digital implementation With the advent of fast computing and digital information processing techniques, synthetic aperture radar (SAR) technology has become both more powerful and more accurate. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms addresses these recent developments, providing a complete, up-to-date analysis of SAR and its associated digital signal processing algorithms. This book introduces the wavefront reconstruction signal theory that underlies the best SAR imaging methods and provides clear guidelines to system design, implementation, and applications in diverse areas-from airborne reconnaissance to topographic imaging of ocean floors to surveillance and air traffic control to medical imaging techniques, and numerous others. Enabling professionals in radar signal and image processing to use synthetic aperture technology to its fullest potential, this work: * Includes M-files to supplement this book that can be retrieved from The MathWorks anonymous FTP server at ftp://ftp.mathworks.com/pub/books/soumekh * Provides practical examples and results from real SAR, ISAR, and CSAR databases * Outlines unique properties of the SAR signal that cannot be found in other information processing systems * Examines spotlight SAR, stripmap SAR, circular SAR, and monopulse SAR modalities * Discusses classical SAR processing issues such as motion compensation and radar calibration
A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB? to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.