Download Free R Function Relationships For Application In The Fractional Calculus Book in PDF and EPUB Free Download. You can read online R Function Relationships For Application In The Fractional Calculus and write the review.

The F-function, and its generalization the R-function, are of fundamental importance in the fractional calculus. It has been shown that the solution of the fundamental linear fractional differential equation may be expressed in terms of these functions. These functions serve as generalizations of the exponential function in the solution of fractional differential equations. Because of this central role in the fractional calculus, this paper explores various intrarelationships of the R-function, which will be useful in further analysis. Relationships of the R-function to the common exponential function, e[factor t], and its fractional derivatives are shown. From the relationships developed, some important approximations are observed. Further, the inverse relationships of the exponential function, e[factor t], in terms of the R-function are developed. Also, some approximations for the R-function are developed.
The F-function, and its generalization the R-function, are of fundamental importance in the fractional calculus. It has been shown that the solution of the fundamental linear fractional differential equation may be expressed in terms of these functions. These functions serve as generalizations of the exponential function in the solution of fractional differential equations. Because of this central role in the fractional calculus, this paper explores various intrarelationships of the R-function, which will be useful in further analysis. Relationships of the R-function to the common exponential function, e(t), and its fractional derivatives are shown. From the relationships developed, some important approximations are observed. Further, the inverse relationships of the exponential function, el, in terms of the R-function are developed. Also, some approximations for the R-function are developed.Lorenzo, Carl F. and Hartley, Tom T.Glenn Research CenterCALCULUS; FUNCTIONS (MATHEMATICS); EXPONENTIAL FUNCTIONS; LINEAR EQUATIONS; DIFFERENTIAL EQUATIONS; APPROXIMATION; SERIES (MATHEMATICS)
Addresses the rapidly growing ­field of fractional calculus and provides simpli­fied solutions for linear commensurate-order fractional differential equations ­The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science is the result of the authors’ work in fractional calculus, and more particularly, in functions for the solutions of fractional di­fferential equations, which is fostered in the behavior of generalized exponential functions. The authors discuss how fractional trigonometry plays a role analogous to the classical trigonometry for the fractional calculus by providing solutions to linear fractional di­fferential equations. The book begins with an introductory chapter that o­ffers insight into the fundamentals of fractional calculus, and topical coverage is then organized in two main parts. Part One develops the definitions and theories of fractional exponentials and fractional trigonometry. Part Two provides insight into various areas of potential application within the sciences. The fractional exponential function via the fundamental fractional differential equation, the generalized exponential function, and R-function relationships are discussed in addition to the fractional hyperboletry, the R1-fractional trigonometry, the R2-fractional trigonometry, and the R3-trigonometric functions. ­The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science also: Presents fractional trigonometry as a tool for scientists and engineers and discusses how to apply fractional-order methods to the current toolbox of mathematical modelers Employs a mathematically clear presentation in an e­ ort to make the topic broadly accessible Includes solutions to linear fractional di­fferential equations and generously features graphical forms of functions to help readers visualize the presented concepts Provides e­ffective and efficient methods to describe complex structures ­The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science is an ideal reference for academic researchers, research engineers, research scientists, mathematicians, physicists, biologists, and chemists who need to apply new fractional calculus methods to a variety of disciplines. The book is also appropriate as a textbook for graduate- and PhD-level courses in fractional calculus. Carl F. Lorenzo is Distinguished Research Associate at the NASA Glenn Research Center in Cleveland, Ohio. His past positions include chief engineer of the Instrumentation and Controls Division and chief of the Advanced Controls Technology and Systems Dynamics branches at NASA. He is internationally recognized for his work in the development and application of the fractional calculus and fractional trigonometry. Tom T. Hartley, PhD, is Emeritus Professor in the Department of Electrical and Computer Engineering at The University of Akron. Dr Hartley is a recognized expert in fractional-order systems, and together with Carl Lorenzo, has solved fundamental problems in the area including Riemann’s complementary-function initialization function problem. He received his PhD in Electrical Engineering from Vanderbilt University.
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
This book is a printed edition of the Special Issue "Fractional Calculus: Theory and Applications" that was published in Mathematics
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
This book presents a simplified deliberation of fractional calculus, which will appeal not only to beginners, but also to various applied science mathematicians and engineering researchers. The text develops the ideas behind this new field of mathematics, beginning at the most elementary level, before discussing its actual applications in different areas of science and engineering. This book shows that the simple, classical laws based on Newtonian calculus, which work quite well under limiting and idealized conditions, are not of much use in describing the dynamics of actual systems. As such, the application of non-Newtonian, or generalized, calculus in the governing equations, allows the order of differentiation and integration to take on non-integer values.