Download Free Query Answer Authentication Book in PDF and EPUB Free Download. You can read online Query Answer Authentication and write the review.

Introduces various notions that the research community has studied for defining the correctness of a query answer. This book presents authentication mechanisms for a wide variety of queries in the context of relational and spatial databases, text retrieval, and data streams. It also explains the cryptographic protocols from which the authentication mechanisms derive their security properties.
The topic of using views to answer queries has been popular for a few decades now, as it cuts across domains such as query optimization, information integration, data warehousing, website design and, recently, database-as-a-service and data placement in cloud systems. This book assembles foundational work on answering queries using views in a self-contained manner, with an effort to choose material that constitutes the backbone of the research. It presents efficient algorithms and covers the following problems: query containment; rewriting queries using views in various logical languages; equivalent rewritings and maximally contained rewritings; and computing certain answers in the data-integration and data-exchange settings. Query languages that are considered are fragments of SQL, in particular select-project-join queries, also called conjunctive queries (with or without arithmetic comparisons or negation), and aggregate SQL queries. This second edition includes two new chapters that refer to tree-like data and respective query languages. Chapter 8 presents the data model for XML documents and the XPath query language, and Chapter 9 provides a theoretical presentation of tree-like data model and query language where the tuples of a relation share a tree-structured schema for that relation and the query language is a dialect of SQL with evaluation techniques appropriately modified to fit the richer schema.
The topic of using views to answer queries has been popular for a few decades now, as it cuts across domains such as query optimization, information integration, data warehousing, website design, and, recently, database-as-a-service and data placement in cloud systems. This book assembles foundational work on answering queries using views in a self-contained manner, with an effort to choose material that constitutes the backbone of the research. It presents efficient algorithms and covers the following problems: query containment; rewriting queries using views in various logical languages; equivalent rewritings and maximally contained rewritings; and computing certain answers in the data-integration and data-exchange settings. Query languages that are considered are fragments of SQL, in particular, select-project-join queries, also called conjunctive queries (with or without arithmetic comparisons or negation), and aggregate SQL queries.
This book constitutes the refereed proceedings of the Cryptographers' Track at the RSA Conference 2003, CT-RSA 2003, held in San Francisco, CA, USA, in April 2003. The 26 revised full papers presented together with abstracts of 2 invited talks were carefully reviewed and selected from 97 submissions. The papers are organized in topical sections on key self-protection, message authentication, digital signatures, pairing based cryptography, multivariate and lattice problems, cryptographic architectures, new RSA-based cryptosystems, chosen-ciphertext security, broadcast encryption and PRF sharing, authentication structures, elliptic curves and pairings, threshold cryptography, and implementation issues.
Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area.
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
After the traditional document-centric Web 1.0 and user-generated content focused Web 2.0, Web 3.0 has become a repository of an ever growing variety of Web resources that include data and services associated with enterprises, social networks, sensors, cloud, as well as mobile and other devices that constitute the Internet of Things. These pose unprecedented challenges in terms of heterogeneity (variety), scale (volume), and continuous changes (velocity), as well as present corresponding opportunities if they can be exploited. Just as semantics has played a critical role in dealing with data heterogeneity in the past to provide interoperability and integration, it is playing an even more critical role in dealing with the challenges and helping users and applications exploit all forms of Web 3.0 data. This book presents a unified approach to harness and exploit all forms of contemporary Web resources using the core principles of ability to associate meaning with data through conceptual or domain models and semantic descriptions including annotations, and through advanced semantic techniques for search, integration, and analysis. It discusses the use of Semantic Web standards and techniques when appropriate, but also advocates the use of lighter weight, easier to use, and more scalable options when they are more suitable. The authors' extensive experience spanning research and prototypes to development of operational applications and commercial technologies and products guide the treatment of the material. Table of Contents: Role of Semantics and Metadata / Types and Models of Semantics / Annotation -- Adding Semantics to Data / Semantics for Enterprise Data / Semantics for Services / Semantics for Sensor Data / Semantics for Social Data / Semantics for Cloud Computing / Semantics for Advanced Applications
The use of logic in databases started in the late 1960s. In the early 1970s Codd formalized databases in terms of the relational calculus and the relational algebra. A major influence on the use of logic in databases was the development of the field of logic programming. Logic provides a convenient formalism for studying classical database problems and has the important property of being declarative, that is, it allows one to express what she wants rather than how to get it. For a long time, relational calculus and algebra were considered the relational database languages. However, there are simple operations, such as computing the transitive closure of a graph, which cannot be expressed with these languages. Datalog is a declarative query language for relational databases based on the logic programming paradigm. One of the peculiarities that distinguishes Datalog from query languages like relational algebra and calculus is recursion, which gives Datalog the capability to express queries like computing a graph transitive closure. Recent years have witnessed a revival of interest in Datalog in a variety of emerging application domains such as data integration, information extraction, networking, program analysis, security, cloud computing, ontology reasoning, and many others. The aim of this book is to present the basics of Datalog, some of its extensions, and recent applications to different domains.
On the Web, a massive amount of user-generated content is available through various channels (e.g., texts, tweets, Web tables, databases, multimedia-sharing platforms, etc.). Conflicting information, rumors, erroneous and fake content can be easily spread across multiple sources, making it hard to distinguish between what is true and what is not. This book gives an overview of fundamental issues and recent contributions for ascertaining the veracity of data in the era of Big Data. The text is organized into six chapters, focusing on structured data extracted from texts. Chapter 1 introduces the problem of ascertaining the veracity of data in a multi-source and evolving context. Issues related to information extraction are presented in Chapter 2. Current truth discovery computation algorithms are presented in details in Chapter 3. It is followed by practical techniques for evaluating data source reputation and authoritativeness in Chapter 4. The theoretical foundations and various approaches for modeling diffusion phenomenon of misinformation spreading in networked systems are studied in Chapter 5. Finally, truth discovery computation from extracted data in a dynamic context of misinformation propagation raises interesting challenges that are explored in Chapter 6. This text is intended for a seminar course at the graduate level. It is also to serve as a useful resource for researchers and practitioners who are interested in the study of fact-checking, truth discovery, or rumor spreading.
Since the introduction of Bitcoin—the first widespread application driven by blockchain—the interest of the public and private sectors in blockchain has skyrocketed. In recent years, blockchain-based fabrics have been used to address challenges in diverse fields such as trade, food production, property rights, identity-management, aid delivery, health care, and fraud prevention. This widespread interest follows from fundamental concepts on which blockchains are built that together embed the notion of trust, upon which blockchains are built. 1. Blockchains provide data transparancy. Data in a blockchain is stored in the form of a ledger, which contains an ordered history of all the transactions. This facilitates oversight and auditing. 2. Blockchains ensure data integrity by using strong cryptographic primitives. This guarantees that transactions accepted by the blockchain are authenticated by its issuer, are immutable, and cannot be repudiated by the issuer. This ensures accountability. 3. Blockchains are decentralized, democratic, and resilient. They use consensus-based replication to decentralize the ledger among many independent participants. Thus, it can operate completely decentralized and does not require trust in a single authority. Additions to the chain are performed by consensus, in which all participants have a democratic voice in maintaining the integrity of the blockchain. Due to the usage of replication and consensus, blockchains are also highly resilient to malicious attacks even when a significant portion of the participants are malicious. It further increases the opportunity for fairness and equity through democratization. These fundamental concepts and the technologies behind them—a generic ledger-based data model, cryptographically ensured data integrity, and consensus-based replication—prove to be a powerful and inspiring combination, a catalyst to promote computational trust. In this book, we present an in-depth study of blockchain, unraveling its revolutionary promise to instill computational trust in society, all carefully tailored to a broad audience including students, researchers, and practitioners. We offer a comprehensive overview of theoretical limitations and practical usability of consensus protocols while examining the diverse landscape of how blockchains are manifested in their permissioned and permissionless forms.