Download Free Quasi Static Electromagnetic Fields Book in PDF and EPUB Free Download. You can read online Quasi Static Electromagnetic Fields and write the review.

This volume includes contributions on: field theory and advanced computational electromagnetics; electrical machines and transformers; optimization and interactive design; electromagnetics in materials; coupled field and electromagnetic components in mechatronics; induction heating systems; bioelectromagnetics; and electromagnetics in education.
This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition-Electromagnetic Compatibility: Principles and Applications, Second Edition:
The main part of the book describes the behaviour of a charged particle in an electromagnetic field, and the electrodynamics of plasmas, liquid crystals and superconductors. These very different subjects have an important common feature, namely the fundamental role played by the magnetic field. Plasmas, liquid crystals and superconductors can be considered as magnetoactive media, because their electromagnetic characteristics are strongly affected by an external magnetic field.
During the author's graduate studies in electromagnetic waves at Xidian University (China) in 1987, He published the electromagnetic field mutual energy theorem. Later, the author worked in medical imaging in Germany, Canada, and the United States. 30 years later, the author discovered this theorem, not only the energy theorem, but also the law of conservation of energy. And further discovered the law of mutual energy flow. And it was found that the mutual energy flow has the shape of photon, with sharp particles at both ends and coarse waves in the middle. Strangely, Maxwell's equation cannot prove this law of energy conservation! As a result, the author discovered a loophole in Maxwell's electromagnetic theory. The author fills the gap in Maxwell's electromagnetic theory by proposing a new electromagnetic axiom that radiation does not overflow into the universe. Thus, a classical electromagnetic theory that can include photons was established. Successfully solved wave particle duality problems such as wave collapse.
This is the third volume in the series, in which the topic of the effects of radio frequencies on human tissue, now increasingly a concern with the prevalence of cell phones, is explored by Prof. Lin and other researchers. The impact of electromagnetics on imaging and cardiology, both very keen areas of research at present, is also explored.
Everyone, whether they like it or not, is exposed to electromagnetic fields, most of the time, at very low levels. In this case, they are inconsequential, but they can cause adverse health effects when they become intense enough. This topic is complex and sensitive. Covering frequencies from 0 Hz to 300 GHz, Human Exposure to Electromagnetic Fields provides an overview of this vast topic. After a reminder of the concepts of electromagnetic fields, the author presents some examples of sources of radiation in daily life and in the industrial or medical sectors. The biophysical and biological effects of these fields on the human body are detailed and the exposure limits are recalled. The exposure assessment and the implementation of the appropriate regulation within companies are also covered. Technically and practically, this book is aimed at people with a scientific background, risk prevention actors, health physicians, especially occupational doctors, and equipment designers.
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.
The first edition of this book has been recognized as the standard reference on biological effects of electric and magnetic fields from DC to microwaves. But much has changed in this science since the book's original publication in 1986. With contributions from eighteen leading researchers, this latest edition includes authoritative discussions of many new developments and will quickly become the new, must-have resource handbook. Dielectric properties of biological tissue are thoroughly examined, followed by chapters on physical mechanisms and biological effects of static and extremely low frequency magnetic fields. New chapters on topics that were treated very briefly in the first edition now receive extensive treatment. These topics include electric and magnetic fields for bone and soft tissue repair, electroporation, and epidemiology of ELF health effects. The chapter on computer methods for predicting field intensity has been substantially revised to describe new numerical techniques developed within the last few years and includes calculations of power absorbed in the human head from cellular telephones. The chapter discussing experimental results on RF interaction with living matter now contains information on effects of very high power, very short duration pulses. A new appendix on safety standards is based on the latest publications of governmental, as well as quasi-governmental organizations (such as the U.S. Council on Radiation Protection) in the United States, Europe, and Australia. With all its revisions, this updated version of the CRC Handbook of Biological Effects of Electromagnetic Fields provides the most comprehensive overview available of this rapidly changing science.