Download Free Quasi One Dimensional Conductors Book in PDF and EPUB Free Download. You can read online Quasi One Dimensional Conductors and write the review.

The book includes a thorough description of a wide range of physical properties of organic superconductors of reduced dimensionality. The authors start with an overview of the field followed by a background discussion and selected experimental topics. A critical discussion of theoretical proposals is presented under the constraints of experimental observations and exciting possibilities for the symmetry of the order parameter are presented, including the cases of inhomogeneous superconducting states and triplet superconductivity. The possible origins of Cooper pairing are explored and tests to detect experimentally the pairing symmetry are described in detail. The book ends with a discussion of important open questions, where the search for their answers will keep the field alive for the next decade.
The close relationship between experimentalists and theorists – whether solid state chemists or physicists – has, in the last few years, inspired much research in the field of materials with quasi one-dimensional structures. This volume, Part I of a two-volume set, reviews the basic theories describing the physical properties of one-dimensional materials including their superconducting characteristics. This description is mainly based on the properties of transition metal trichalcogenides. The novel collective transport mechanism for electronic conduction, exhibited by some of the latter compounds – NbSe3 being considered as the prototype – is surveyed according to a classical theory and a theory including macroscopic quantum effects. In addition, the book contains a description of the properties of non-linear excitations, or solitons, in one-dimensional systems.
This volume deals with physical properties of electrically one-dimensional conductors. It includes both a description of basic concepts and a review of recent progress in research. One-dimensional conductors are those materials in which an electric current flows easily in one specific crystal direction while the resistivity is very high in transverse directions. It was about 1973 when much attention began to be focussed on them and investigations started in earnest. The research was stimulated by the successful growth of crystals of the organic conductor TTF-TCNQ and of the inorganic conductor KCP. New concepts, characteristic of one dimension, were established in the in vestigations of their properties. Many new one-dimensional conductors were also found and synthesized. This field of research is attractive because of the discovery of new ma terials, phenomena and concepts which have only recently found a place in the framework of traditional solid-state physics and materials science. The relation of this topic to the wider field of solid-state sciences is therefore still uncertain. This situation is clearly reflected in the wide distribution of the fields of specialization of researchers. Due to this, and also to the rapid progress of research, no introductory book has been available which covers most of the important fields of research on one-dimensional conductors.
Starting from the early experiments, this detailed presentation, containing more than 500 references, provides a comprehensive review on current-induced nonequilibrium phenomena in quasi-one-dimensional superconductors, leading the reader from the fundamentals to the most recent research results. Experiments on monocrystalline filaments (whiskers) - including those obtained by the author - are compared with results on long thin film microbridges and related species and interpreted within the theoretical framework. Instructions on experimental techniques are given and yet unresolved problems are discussed. The book is well suited as an introduction for the novice and as a handbook for the active researcher.
Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have established themselves as experts in theoreti cal and experimental solid-state physics. The book is intended to be of use both to students and researchers entering the field as well as to more advanced physicists. The wealth of ideas and information it contains ought to be useful to anyone interested in quasi-one-dimensional systems, organic solids, or the search for novel conduction and superconduction mechanisms. The editors are very grateful to the authors for their collaboration in this book.
Organic Superconductors is an introduction to organic conductors and superconductors and a review of the current status of the field. First, organic conductors are described, then the structures and electronic properties of organic superconductors are discussed, illustrated with examples of typical compounds. The book deals in detail with theories of the mechanism of superconductivity, and more briefly with spin-density waves. The design, principle, and synthesis of organic superconductors are also described. This second edition covers the research activities of the last few years.
Research activities in low dimensional conductors have shown a rapid growth since 1972 and have led to the discovery of new and remarkable phy sical properties unique to both molecular and inorganic conductors exhibi ting one-dimensional transport behaviour. This NATO Institute was a conti nuation of aseries of NATO Advanced Study Institutes of Worshops which took place at regular intervals till 1979. This is the first time, however, that charge density wave transport and electronic properties of low dimen sional organic conductors are treated on an equal footing. The program of the Institute was framed by tutorial lectures in the theories and experiments of low dimensional conductors. The bulk of the course covered two series of low-dimensional mate rials with their respective properties. 1) The I-D inorganic conductors exhibiting the phenomena of sliding charge density waves, narrow band noise, memory effects, etc ..• 2) Low-dimensional crystallized organic conductors giving rise to various possibilities of ground states, spin-Peierls, spin density wave, Peierls, superconductivity and magnetic-field induced spin density wave, etc ... Since it has been established from the beginning that this Institute was to be devoted essentially to the Physics of Low Dimensional Conductors, only one main course summarized the progress in chemistry and material preparation.
Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. The second edition of this successful book has been completely revised to include the remarkable achievements of the last ten years of research and applications. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials.