Download Free Quantum Versus Classical Mechanics And Integrability Problems Book in PDF and EPUB Free Download. You can read online Quantum Versus Classical Mechanics And Integrability Problems and write the review.

This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author.The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language.In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy.The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations.The book contains also a generalized theory of classical Stäckel transforms and the discussion of the concept of quantum trajectories.In order to make the text consistent and self-contained, the book starts with a compact overview of mathematical tools necessary for understanding the remaining part of the book. However, because the book is dedicated mainly to physicists, despite its mathematical nature, it refrains from highlighting definitions, theorems or lemmas.Nevertheless, all statements presented are either proved or the reader is referred to the literature where the proof is available.
This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author. The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language. In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy. The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations. The book contains also a generalized theory of classical Stäckel transforms and the discussion of the concept of quantum trajectories. In order to make the text consistent and self-contained, the book starts with a compact overview of mathematical tools necessary for understanding the remaining part of the book. However, because the book is dedicated mainly to physicists, despite its mathematical nature, it refrains from highlighting definitions, theorems or lemmas. Nevertheless, all statements presented are either proved or the reader is referred to the literature where the proof is available.
Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.
This book is about Dr. Jin Tong Wang’s collected research works included: 1) Brillouin “Small Angle, Right Angle and Backscattering”. There were achieved three significances, a) smallest angle scattering in the world at that time. It was a world record; b) discovered from small angle, right angle and backscattering results, the sound velocity was not a constant with the same phonon mode. It actually depends on the phone frequencies. At that time, no one in this field didn’t know how to interpret it. Based on the results in the study, published a paper in Physical Review B in 1986; 2) By the support of Office of Naval Research, we created quite a few navel Ferro-piezoelectric materials. We have done experiments on ferroelectricity, piezoelectricity and pyroelectricity measurements. Based on the experiment we have some intriguing findings; 3) We also work on theories on several topics. First of all, we proposed a displacive- order-disorder (DOD) ferroelectric transition model for para-ferroelectric phase transition mechanism. The paper was published in the well-known European journal “Ferroelectrics”. The DOD phase transition mechanism clarified the long-time dispute whether the para-ferroelectric phase transition was displacive or order-disorder one; 4) Derived an Accurate Formulation of Faraday, Magnetic Circular Dichroism (MCD) and Kerr Effect of Light in Ferro-electromagnet.; 5) published several papers in the frontier of quantum mechanics including: the red shift of photon frequency in gravitational potential; the mechanism of electron photo emission; the unification of classical mechanics and quantum mechanics; the origin of quantum particle entanglement and quantum wave packet tunneling. Some papers have caught attentions by physics communities; 5) two patents created by author. One is microwave-plasma and plasma torch gasifier. Another one is plasma torch directly refine metal titanium; 6) Also published some papers in Chinese. Some were appeared well-known Chinese News Paper. In some paper, the advantages and disadvantages in two social systems were analyzed in physical point of view. All these published papers are edited in this collection.
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Recent developments in nonlinear dynamics has significantly altered our basic understanding of the foundations of classical physics. However, it is quantum mechanics, not classical mechanics, which describes the motion of the nucleons, atoms, and molecules in the microscopic world. What are then the quantum signatures of the ubiquitous chaotic behavior observed in classical physics? In answering this question one cannot avoid probing the deepest foundations connecting classical and quantum mechanics. This monograph reviews some of the most current thinkings and developments in this exciting field of physics.
It is commonly known that three or more particles interacting via a two-body potential is an intractable problem. However, similar systems confined to one dimension yield exactly solvable equations, which have seeded widely pursued studies of one-dimensional n-body problems. The interest in these investigations is justified by their rich and quantitative insights into real-world classical and quantum problems, birthing a field that is the subject of this book. Spanning four bulk chapters, this book is written with the hope that readers come to appreciate the beauty of the mathematical results concerning the models of many-particle systems, such as the interaction between light particles and infinitely massive particles, as well as interacting quasiparticles. As the book discusses several unsolved problems in the subject, it functions as an insightful resource for researchers working in this branch of mathematical physics.In Chapter 1, the author first introduces readers to interesting problems in mathematical physics, with the prime objective of finding integrals of motion for classical many-particle systems as well as the exact solutions of the corresponding equations of motions. For these studied systems, their quantum mechanical analogue is then developed in Chapter 2. In Chapter 3, the book focuses on a quintessential problem in the quantum theory of magnetism: namely, to find all integrable one-dimensional systems involving quasiparticles of interacting one-half spins. Readers will study the integrable periodic chains of interacting one-half spins and discover the integrals of motion for such systems, as well as the eigenvectors of their corresponding Hamiltonians. In the last chapter, readers will study about integrable systems of quantum particles, with spin and mutual interactions involving rational, trigonometric, or elliptic potentials.
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
Our DMV Seminar on 'Classical Nonintegrability, Quantum Chaos' intended to introduce students and beginning researchers to the techniques applied in nonin tegrable classical and quantum dynamics. Several of these lectures are collected in this volume. The basic phenomenon of nonlinear dynamics is mixing in phase space, lead ing to a positive dynamical entropy and a loss of information about the initial state. The nonlinear motion in phase space gives rise to a linear action on phase space functions which in the case of iterated maps is given by a so-called transfer operator. Good mixing rates lead to a spectral gap for this operator. Similar to the use made of the Riemann zeta function in the investigation of the prime numbers, dynamical zeta functions are now being applied in nonlinear dynamics. In Chapter 2 V. Baladi first introduces dynamical zeta functions and transfer operators, illustrating and motivating these notions with a simple one-dimensional dynamical system. Then she presents a commented list of useful references, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A. Knauf deal with solutions of the Hamilton and the Schr6dinger equation. Scatter ing by a potential force tends to be irregular if three or more scattering centres are present, and a typical phenomenon is the occurrence of a Cantor set of bounded orbits. The presence of this set influences those scattering orbits which come close.
Mechanics: Classical and Quantum is a 13-chapter book that begins by explaining the Lagrangian and Hamiltonian formulation of mechanics. The Hamilton-Jacobi theory, historical background of the quantum theory, and wave mechanics are then described. Subsequent chapters discuss the time-independent Schrödinger equation and some of its applications; the operators, observables, and the quantization of a physical system; the significance of expectation values; and the concept of measurement in quantum mechanics. The matrix mechanics and the "hydrogenic atom", an atom in which one electron moves under the influence of a nucleus of charge that, to a very good approximation, can be thought of as a point, are also presented. This book will be very useful to students studying this field of interest.