Download Free Quantum Theory A Concise Edition Book in PDF and EPUB Free Download. You can read online Quantum Theory A Concise Edition and write the review.

Presenting a variety of topics that are only briefly touched on in other texts, this book provides a thorough introduction to the techniques of field theory. Covering Feynman diagrams and path integrals, the author emphasizes the path integral approach, the Wilsonian approach to renormalization, and the physics of non-abelian gauge theory. It provides a thorough treatment of quark confinement and chiral symmetry breaking, topics not usually covered in other texts at this level. The Standard Model of particle physics is discussed in detail. Connections with condensed matter physics are explored, and there is a brief, but detailed, treatment of non-perturbative semi-classical methods. Ideal for graduate students in high energy physics and condensed matter physics, the book contains many problems,which help students practise the key techniques of quantum field theory.
Bohr and Planck helped shaped the cultural landscape of the world today. Now their work is available here in a digestible, pocket format for the modern reader. A concise, uncluttered edition for the modern reader, with a new introduction. Quantum Theory contains two foundational works of quantum research from the early years of the 20th Century, representing breakthroughs in science that radically altered the landscape of modern knowledge: Quantum Theory of Line-Spectra by Niels Bohr and The Origin and Development of the Quantum Theory by Max Planck. The FLAME TREE Foundations series features core publications which together have shaped the cultural landscape of the modern world, with cutting-edge research distilled into pocket guides designed to be both accessible and informative.
Quantum Theory is the most revolutionary discovery in physics since Newton. This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare. Uncertainty, probabilistic physics, complementarity, the problematic character of measurement, and decoherence are among the many topics discussed. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
There are many excellent books on quantum theory from which one can learn to compute energy levels, transition rates, cross sections, etc. The theoretical rules given in these books are routinely used by physicists to compute observable quantities. Their predictions can then be compared with experimental data. There is no fundamental disagreement among physicists on how to use the theory for these practical purposes. However, there are profound differences in their opinions on the ontological meaning of quantum theory. The purpose of this book is to clarify the conceptual meaning of quantum theory, and to explain some of the mathematical methods which it utilizes. This text is not concerned with specialized topics such as atomic structure, or strong or weak interactions, but with the very foundations of the theory. This is not, however, a book on the philosophy of science. The approach is pragmatic and strictly instrumentalist. This attitude will undoubtedly antagonize some readers, but it has its own logic: quantum phenomena do not occur in a Hilbert space, they occur in a laboratory.
Starting from basic principles, the book systematically covers both Heisenberg and Schrödinger realizations of quantum mechanics (in this order). It provides excellent didactic introduction to the essential principles and treats recent concepts such as entanglement and decoherence. The book gives the background needed to understand quantum cryptography, teleportation and computation, and it is especially suitable for introducing the spin. This second edition includes a more friendly presentation to Hilbert spaces, and more practical applications e.g. scanning tunneling microscope (potential barrier).
From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Your plain-English guide to understanding and working with the micro world Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more Quantum physics — also called quantum mechanics or quantum field theory — can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro! Compatible with any classroom course — study at your own pace and prepare for graduate or professional exams Your journey begins here — understand what quantum physics is and what kinds of problems it can solve Know the basic math — from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work — make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions — use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research — learn the cutting-edge quantum physics theories that aim to explain the universe itself
The Quantum Mechanics Solver is unique as it illustrates the application of quantum mechanical concepts to various fields of modern physics. It aims at encouraging the reader to apply quantum mechanics to research problems in fields such as molecular physics, condensed matter physics or laser physics. Advanced undergraduates and graduate students will find a rich and challenging source of material for further exploration.
Quantum mechanics is the key to modern physics and chemistry, yet it is notoriously difficult to understand. This book is designed to overcome that obstacle. Clear and concise, it provides an easily readable introduction intended for science undergraduates with no previous knowledge of quantum theory, leading them through to the advanced topics usually encountered at the final year level. Although the subject matter is standard, novel techniques have been employed that considerably simplify the technical presentation. The authors use their extensive experience of teaching and popularizing science to explain the many difficult, abstract points of the subject in easily comprehensible language. Helpful examples and thorough sets of exercises are also given to enable students to master the subject.
This bestselling textbook teaches students how to do quantum mechanics and provides an insightful discussion of what it actually means.