Download Free Quantum Structures And The Nature Of Reality Book in PDF and EPUB Free Download. You can read online Quantum Structures And The Nature Of Reality and write the review.

Quantum Structures and the Nature of Reality is a collection of papers written for an interdisciplinary audience about the quantum structure research within the International Quantum Structures Association. The advent of quantum mechanics has changed our scientific worldview in a fundamental way. Many popular and semi-popular books have been published about the paradoxical aspects of quantum mechanics. Usually, however, these reflections find their origin in the standard views on quantum mechanics, most of all the wave-particle duality picture. Contrary to relativity theory, where the meaning of its revolutionary ideas was linked from the start with deep structural changes in the geometrical nature of our world, the deep structural changes about the nature of our reality that are indicated by quantum mechanics cannot be traced within the standard formulation. The study of the structure of quantum theory, its logical content, its axiomatic foundation, has been motivated primarily by the search for their structural changes. Due to the high mathematical sophistication of this quantum structure research, no books have been published which try to explain the recent results for an interdisciplinary audience. This book tries to fill this gap by collecting contributions from some of the main researchers in the field. They reveal the steps that have been taken towards a deeper structural understanding of quantum theory.
The strangeness of modern physics has sparked several popular books--such as The Tao of Physics--that explore its affinity with Eastern mysticism. But the founders of quantum mechanics were educated in the classical traditions of Western civilization and Western philosophy. In Nature Loves to Hide, physicist Shimon Malin takes readers on a fascinating tour of quantum theory--one that turns to Western philosophical thought to clarify this strange yet inescapable explanation of reality. Malin translates quantum mechanics into plain English, explaining its origins and workings against the backdrop of the famous debate between Niels Bohr and the skeptical Albert Einstein. Then he moves on to build a philosophical framework that can account for the quantum nature of reality. He shows, for instance, how Platonic and Neoplatonic thought resonates with quantum theory. He draws out the linkage between the concepts of Neoplatonism and the more recent process philosophy of Alfred North Whitehead. The universe, Whitehead wrote, is an organic whole, composed not of lifeless objects, but "elementary experiences." Beginning with Whitehead's insight, Malin shows how this concept of "throbs of experience" expresses quantum reality, with its subatomic uncertainties, its constituents that are waves and also particles, its emphasis on acts of measurement. Once any educated person could explain the universe as a vast Newtonian web of cause and effect, but since quantum theory, reality again appears to be richer and more mysterious than we had thought. Writing with broad humanistic insight and deep knowledge of science, and using delightful conversations with fictional astronauts Peter and Julie to explain more difficult concepts, Shimon Malin offers a profound new understanding of the nature of reality--one that shows a deep continuity with aspects of our Western philosophical tradition going back 2500 years, and that feels more deeply satisfying, and truer, than the clockwork universe of Newton.
This book describes how understanding the structure of reality leads to the Theory of Everything Equation. The equation unifies the forces of nature and enables the merging of relativity with quantum theory. The book explains the big bang theory and everything else.
Combining twenty-six original essays written by an impressive line-up of distinguished physicists and philosophers of physics, this anthology reflects some of the latest thoughts by leading experts on the influence of Bell's theorem on quantum physics. Essays progress from John Bell's character and background, through studies of his main work, and on to more speculative ideas, addressing the controversies surrounding the theorem, and investigating the theorem's meaning and its deep implications for the nature of physical reality. Combined, they present a powerful comment on the undeniable significance of Bell's theorem for the development of ideas in quantum physics over the past 50 years. Questions surrounding the assumptions and significance of Bell's work still inspire discussion in the field of quantum physics. Adding to this with a theoretical and philosophical perspective, this balanced anthology is an indispensable volume for students and researchers interested in the philosophy of physics and the foundations of quantum mechanics.
Many scientists regard mass and energy as the primary currency of nature. In recent years, however, the concept of information has gained importance. Why? In this book, eminent scientists, philosophers and theologians chart various aspects of information, from quantum information to biological and digital information, in order to understand how nature works. Beginning with a historical treatment of the topic, the book also examines physical and biological approaches to information, and its philosophical, theological and ethical implications.
Questions of the fundamental nature of matter continue to inspire and engage our imagination. However, the exciting new concepts of strings, supersymmetry and exotic matter build on ideas that are well known to physicists but mysterious and puzzling to people outside of these research fields. Covering key conceptual developments from the last century, this book provides a background to the bold ideas and challenges faced by physicists today. Quantum theory and the Standard Model of particles are explained with minimal mathematics, and advanced topics, such as gauge theory and quantum field theory, are put into context. With concise, lucid explanations, this book is an essential guide to the world of particle physics.
Quantum mechanics is an extraordinarily successful scientific theory. It is also completely mad. Although the theory quite obviously works, it leaves us chasing ghosts and phantoms; particles that are waves and waves that are particles; cats that are at once both alive and dead; and lots of seemingly spooky goings-on. But if we're prepared to be a little more specific about what we mean when we talk about 'reality' and a little more circumspect in the way we think a scientific theory might represent such a reality, then all the mystery goes away. This shows that the choice we face is actually a philosophical one. Here, Jim Baggott provides a quick but comprehensive introduction to quantum mechanics for the general reader, and explains what makes this theory so very different from the rest. He also explores the processes involved in developing scientific theories and explains how these lead to different philosophical positions, essential if we are to understand the nature of the great debate between Niels Bohr and Albert Einstein. Moving forwards, Baggott then provides a comprehensive guide to attempts to determine what the theory actually means, from the Copenhagen interpretation to many worlds and the multiverse. Richard Feynman once declared that 'nobody understands quantum mechanics'. This book will tell you why.
Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.
This book defends a radical new theory of contingency as a physical phenomenon. Drawing on the many-worlds approach to quantum theory and cutting-edge metaphysics and philosophy of science, it argues that quantum theories are best understood as telling us about the space of genuine possibilities, rather than as telling us solely about actuality. When quantum physics is taken seriously in the way first proposed by Hugh Everett III, it provides the resources for a new systematic metaphysical framework encompassing possibility, necessity, actuality, chance, counterfactuals, and a host of related modal notions. Rationalist metaphysicians argue that the metaphysics of modality is strictly prior to any scientific investigation; metaphysics establishes which worlds are possible, and physics merely checks which of these worlds is actual. Naturalistic metaphysicians respond that science may discover new possibilities and new impossibilities. This book's quantum theory of contingency takes naturalistic metaphysics one step further, allowing that science may discover what it is to be possible. As electromagnetism revealed the nature of light, as acoustics revealed the nature of sound, as statistical mechanics revealed the nature of heat, so quantum physics reveals the nature of contingency.
Probably the most successful scientific theory ever created, quantum theory has profoundly changed our view of the world and extended the limits of our knowledge, impacting both the theoretical interpretation of a tremendous range of phenomena and the practical development of a host of technological breakthroughs. Yet for all its success, quantum t