Download Free Quantum Monte Carlo Methods In Equilibrium And Nonequilibrium Systems Book in PDF and EPUB Free Download. You can read online Quantum Monte Carlo Methods In Equilibrium And Nonequilibrium Systems and write the review.

Speech by Toyosaburo Taniguchi Dr. Kubo, Chairman, Distinguished Guests, and Friends, I am very happy, pleased and honored to be here this evening with so many distinguished guests, friends, and scholars from within this country and from different parts of the world. The Taniguchi Foundation wishes to extend a warm and sincere welcome to the many participants of the Ninth International Symposium on the Theory of Condensed Matter, which se ries was inaugurated eight years ago through the strenuous efforts of Dr. Ryogo Kubo, who is gracing us today with his presence. We are deeply indebted to Dr. Kubo, Dr. Suzuki, and their associates, who havE' spent an enormous amount of time and effort to make this particular symposium possible. We are convinced that the foundation should not be considered as what makes our symposium a success. The success is entirely due, I feel, to the continuous efforts of the Organizing Committee and of all those who have lent their support to this program. In this sense, your words of praise about the symposium, if any, should be directed to all of them. So far, I have met in person a total of 62 participants in this Division from 12 countries: Argentina, Belgium, Canada, Denmark, the Federal Republic of Germany, France, Ireland, Israel, Rumania, Switzerland, the United Kingdom, and the United States of America, with 133 participants from Japan. Those friends I have been privileged to make, I shall always treasure.
Speech by Toyosaburo Taniguchi Dr. Kubo, Chairman, Distinguished Guests, and Friends, I am very happy, pleased and honored to be here this evening with so many distinguished guests, friends, and scholars from within this country and from different parts of the world. The Taniguchi Foundation wishes to extend a warm and sincere welcome to the many participants of the Ninth International Symposium on the Theory of Condensed Matter, which se ries was inaugurated eight years ago through the strenuous efforts of Dr. Ryogo Kubo, who is gracing us today with his presence. We are deeply indebted to Dr. Kubo, Dr. Suzuki, and their associates, who havE' spent an enormous amount of time and effort to make this particular symposium possible. We are convinced that the foundation should not be considered as what makes our symposium a success. The success is entirely due, I feel, to the continuous efforts of the Organizing Committee and of all those who have lent their support to this program. In this sense, your words of praise about the symposium, if any, should be directed to all of them. So far, I have met in person a total of 62 participants in this Division from 12 countries: Argentina, Belgium, Canada, Denmark, the Federal Republic of Germany, France, Ireland, Israel, Rumania, Switzerland, the United Kingdom, and the United States of America, with 133 participants from Japan. Those friends I have been privileged to make, I shall always treasure.
This volume is the proceedings of the Ninth Taniguchi Symposium on the Theory of Condensed Matter. It presents the basic ideas of quantum statistical Monte Carlo methods, including generalizations of the standard methods, and discusses the important problem of convergence. In addition, some promising powerful new methods are proposed, for example, a transfer-matrix method. Further contributions describe specific applications to quantum spin and fermion systems at finite temperatures, such as the treatment of randomness and frustration in a triangular antiferromagnet, the investigation of critical properties of spin chains, the study of spin glasses and the simulation of polaron and bipolaron systems. In particular, some new information is given about frustrated quantum spin systems and the dense Kondo problem.
This book reviews recent developments of quantum Monte Carlo methods and some remarkable applications to interacting quantum spin systems and strongly correlated electron systems. It contains twenty-two papers by thirty authors. Some of the features are as follows. The first paper gives the foundations of the standard quantum Monte Carlo method, including some recent results on higher-order decompositions of exponential operators and ordered exponentials. The second paper presents a general review of quantum Monte Carlo methods used in the present book. One of the most challenging problems in the field of quantum Monte Carlo techniques, the negative-sign problem, is also discussed and new methods proposed to partially overcome it. In addition, low-dimensional quantum spin systems are studied. Some interesting applications of quantum Monte Carlo methods to fermion systems are also presented to investigate the role of strong correlations and fluctuations of electrons and to clarify the mechanism of high-c superconductivity. Not only thermal properties but also quantum-mechanical ground-state properties have been studied by the projection technique using auxiliary fields. Further, the Haldane gap is confirmed by numerical calculations. Active researchers in the forefront of condensed matter physics as well as young graduate students who want to start learning the quantum Monte Carlo methods will find this book useful.
The fractional quantum Hall effect has opened up a new paradigm in the study of strongly correlated electrons and it has been shown that new concepts, such as fractional statistics, anyon, chiral Luttinger liquid and composite particles, are realized in two-dimensional electron systems. This book explains the quantum Hall effects together with these new concepts starting from elementary quantum mechanics.
The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the two dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.
The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron the positive background charge is well separated from the two gas, where dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.
This volume is the proceedings of the Hiroshima Symposium on Elementary Excitations in Quantum Fluids, which was held on August 17 and 18, 1987, in Hiroshima, Japan, and was attended by thirty-two scientists from seven countries. Quantum fluids have been the subject of intense study as a consequence of their superfluid properties at very low temperatures. Elementary excitations in them are an important concept about which many important discoveries have been made in recent years. This symposium was arranged by a group of physicists from Hiroshima University to provide an opportunity to discuss these recent developments. It was conceived as a satellite conference of the 18th International Conference on Low Temperature Physics (LT 18), which was held in Kyoto, August 20-26, 1987. Emphasis was placed on the dynamic structures and correlations of ele mentary excitations, which resulted in invited speakers being selected from this field. However, enthusiastic contributors reported notable new results on various other aspects of the elementary excitations, which made the sympo sium lively and successful. It is our great satisfaction to present this volume, which includes papers of good quality and originality. We thank all the parti cipants for their cooperation throughout this symposium, and for preparing their manuscripts within a reasonable time.
Interacting many-body systems are the main subjects of research in theoretical condensed matter physics, and they are the source of both the interest and the difficulty in this field. In order to understand the macroscopic properties of matter in terms of macroscopic knowledge, many analytic and approximate methods have been introduced. The contributions to this proceedings volume focus on the most recent developments of computational approaches in condensed matter physics. Monte Carlo methods and molecular dynamics simulations applied to strongly correlated classical and quantum systems such as electron systems, quantum spin systems, spin glassss, coupled map systems, polymers and other random and comlex systems are reviewed. Comprising easy to follow introductions to each field covered and also more specialized contributions,this proceedings volume explains why computational approaches are necessary and how different fields are related to each other.