Download Free Quantum Inspired Computational Intelligence Book in PDF and EPUB Free Download. You can read online Quantum Inspired Computational Intelligence and write the review.

Quantum Inspired Computational Intelligence: Research and Applications explores the latest quantum computational intelligence approaches, initiatives, and applications in computing, engineering, science, and business. The book explores this emerging field of research that applies principles of quantum mechanics to develop more efficient and robust intelligent systems. Conventional computational intelligence—or soft computing—is conjoined with quantum computing to achieve this objective. The models covered can be applied to any endeavor which handles complex and meaningful information. - Brings together quantum computing with computational intelligence to achieve enhanced performance and robust solutions - Includes numerous case studies, tools, and technologies to apply the concepts to real world practice - Provides the missing link between the research and practice
Research on applying principles of quantum computing to improve the engineering of intelligent systems has been launched since late 1990s. This emergent research field concentrates on studying on quantum computing that is characterized by certain principles of quantum mechanics such as standing waves, interference, quantum bits, coherence, superposition of states, and concept of interference, combined with computational intelligence or soft computing approaches, such as artificial neural networks, fuzzy systems, evolutionary computing, swarm intelligence and hybrid soft computing methods. This volume offers a wide spectrum of research work developed using soft computing combined with quantum computing systems.
Quantum Inspired Computational Intelligence: Research and Applications explores the latest quantum computational intelligence approaches, initiatives, and applications in computing, engineering, science, and business. The book explores this emerging field of research that applies principles of quantum mechanics to develop more efficient and robust intelligent systems. Conventional computational intelligence-or soft computing-is conjoined with quantum computing to achieve this objective. The models covered can be applied to any endeavor which handles complex and meaningful information.
Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics
This book is part of a two-volume work that constitutes the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2007, held in Shanghai, China, September 2007. Coverage includes advanced neural network theory, advanced evolutionary computing theory, ant colonies and particle swarm optimization, intelligent modeling, monitoring, and control of complex nonlinear systems, as well as biomedical signal processing, imaging and visualization.
Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
As multimedia data advances in technology and becomes more complex, the hybridization of soft computing tools allows for more robust and safe solutions in data processing and analysis. Quantum-Inspired Intelligent Systems for Multimedia Data Analysis provides emerging research on techniques used in multimedia information processing using intelligent paradigms including swarm intelligence, neural networks, and deep learning. While highlighting topics such as clustering techniques, neural network architecture, and text data processing, this publication explores the methods and applications of computational intelligent tools. This book is an important resource for academics, computer engineers, IT professionals, students, and researchers seeking current research in the field of multimedia data processing and quantum intelligent systems.
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
In recent years computational intelligence has been extended by adding many other subdisciplines and this new field requires a series of challenging problems that will give it a sense of direction in order to ensure that research efforts are not wasted. This book written by top experts in computational intelligence provides such clear directions and a much-needed focus on the most important and challenging research issues.
As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.