Download Free Quantum Groups Quantum Categories And Quantum Field Theory Book in PDF and EPUB Free Download. You can read online Quantum Groups Quantum Categories And Quantum Field Theory and write the review.

This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the different examples starting from the simplest quantum mechanical system — harmonic oscillator and ending with actual problems of modern field theory, such as the attempts to construct lattice-like regularization consistent with space-time Poincaré symmetry and to incorporate Higgs fields in the general geometrical frame of gauge theories. Graduate students and researchers studying the problems of quantum field theory, particle physics and mathematical aspects of quantum symmetries will find the book of interest.
This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time.
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the different examples starting from the simplest quantum mechanical system — harmonic oscillator and ending with actual problems of modern field theory, such as the attempts to construct lattice-like regularization consistent with space-time Poincaré symmetry and to incorporate Higgs fields in the general geometrical frame of gauge theories. Graduate students and researchers studying the problems of quantum field theory, particle physics and mathematical aspects of quantum symmetries will find the book of interest.
Professor Jerzy Lukierski, an outstanding specialist in the domain of quantum groups, will reach on May 21, 1995 the age of sixty. This is a birthday volume dedicated to him. It assumes the form of a collection of papers on a wide range of topics in modern research area from theoretical high energy physics to mathematical physics. Various topics of quantum groups will be treated with a special emphasis. Quantum groups is nowadays a very fashionable subject both in mathematics and high energy physics.
A graduate level text which systematically lays out the foundations of Quantum Groups.
The Proceedings consists of 6 lectures each from Prof L Takhtajan and Prof F Smirnov which were presented during the workshop.