Download Free Quantum Groups Integrable Statistical Models And Knot Theory Book in PDF and EPUB Free Download. You can read online Quantum Groups Integrable Statistical Models And Knot Theory and write the review.

The lectures in this volume discuss topics in statistical mechanics, the geometric and algebraic approaches to q-deformation theories, two-dimensional gravity and related problems of mathematical physics, including Vassiliev invariants and the Jones polynomials, the R-matrix with Z-symmetry, reflection equations and quantum algebra, W-geometry, braid linear algebra, holomorphic q-difference systems and q-Poincaré algebra.
A 1996 introduction to integrability and conformal field theory in two dimensions using quantum groups.
The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.
This book focuses on quantum groups, i.e., continuous deformations of Lie groups, and their applications in physics. These algebraic structures have been studied in the last decade by a growing number of mathematicians and physicists, and are found to underlie many physical systems of interest. They do provide, in fact, a sort of common algebraic ground for seemingly very different physical problems. As it has happened for supersymmetry, the q-group symmetries are bound to play a vital role in physics, even in fundamental theories like gauge theory or gravity. In fact q-symmetry can be considered itself as a generalization of supersymmetry, evident in the q-commutator formulation. The hope that field theories on q-groups are naturally reguralized begins to appear founded, and opens new perspectives for quantum gravity. The topics covered in this book include: conformal field theories and quantum groups, gauge theories of quantum groups, anyons, differential calculus on quantum groups and non-commutative geometry, poisson algebras, 2-dimensional statistical models, (2+1) quantum gravity, quantum groups and lattice physics, inhomogeneous q-groups, q-Poincaregroup and deformed gravity and gauging of W-algebras.
A graduate level text which systematically lays out the foundations of Quantum Groups.
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the different examples starting from the simplest quantum mechanical system — harmonic oscillator and ending with actual problems of modern field theory, such as the attempts to construct lattice-like regularization consistent with space-time Poincaré symmetry and to incorporate Higgs fields in the general geometrical frame of gauge theories. Graduate students and researchers studying the problems of quantum field theory, particle physics and mathematical aspects of quantum symmetries will find the book of interest.
The book is an introduction to quantum mechanics at a level suitable for the second year in a European university (junior or senior year in an American college). The matrix formulation of quantum mechanics is emphasized throughout, and the student is introduced to Dirac notation from the start. A number of major examples illustrate the workings of quantum mechanics. Several of these examples are taken from solid state physics, with the purpose of showing that quantum mechanics forms the common basis for understanding atoms, molecules and condensed matter. The book contains an introductory chapter which puts the concepts of quantum mechanics into a historical framework. The solid-state applications discussed in this text include the quantum Hall effect, spin waves, quantum wells and energy bands. Other examples feature the two-dimensional harmonic oscillator, coherent states, two-electron atoms, the ammonia molecule and the chemical bond. A large number of homework problems are included.
This book aims to present several new developments on stochastic processes and operator calculus on quantum groups. Topics which are treated include operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Audience: This volume contains introductory material for graduate students who are new to the field, as well as more advanced material for specialists in probability theory, algebraic structures, representation theory, mathematical physics and theoretical physics.
This book contains the proceedings of two international conferences: a satellite meeting of the IUPAP Statphys-19 Conference and the Seventh Nankai Workshop, held in Tianjin, China in August 1995. The central theme of the two conferences, which drew participants from 18 countries, was the Yang-Baxter equation and its development and applications. With topics ranging from quantum groups, vertex and spin models, to applications in condensed matter physics, this book reflects the current research interest of integrable systems in statistical mechanics.