Download Free Quantum Gases In Low Dimensions Book in PDF and EPUB Free Download. You can read online Quantum Gases In Low Dimensions and write the review.

The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
The experimental achievement of Bose-Einstein condensation (1995) and of Fermi degeneracy (1999) in ultra-cold, dilute gases has opened a new field in atomic physics and condensed matter physics. This thesis presents an overview of theoretical and experimental facts on ultra-cold atomic gases. A Green's function scheme is examined, and the book also applies a novel spin-density-functional approach to the study of Fermi gases inside one-dimensional optical lattices.
The Special Issue contains theoretical and experimental works that report on studies of impurities in quantum gases, fundamental properties and universal aspects of quasiparticles and other related many-body phenomena. Particular focus is placed on the Fermi and Bose polarons. The Special Issue contains ten research articles and two reviews. M. G. Skou et al. report on the experimental observation of time dynamics of Bose polarons. Theoretical studies by H. Tajima et al., L. A. Ardila, and G. Panochko and V. Pastukhov touch upon the physics of multiple impurities, in particular, the induced impurity-impurity interactions in different spatial dimensions and the formation of multi-polaron states. G. M. Koutentakis et al. elaborate on the phenomenon of temporal orthogonality catastrophe in low dimensions. Polaritons in an electron gas are discussed by M. A. Bastarrachea-Magnani et al. M. Brooks et al. describe the emergence of anyons originating from angulons. F. Scazza et al. provide an overview of our current understanding of repulsive Bose and Fermi polarons. C. D'Errico and M. G. Tarallo explicate the effects of disorder in bosonic systems. The Special Issue also includes studies of correlated atom pairs in bosonic mixtures by O. Alon, the behavior of the three-body decay rate coefficients into shallow dimers in mass-imbalanced three-atom systems by P. Giannakeas and C. H. Greene, population and angular momentum transfer in Raman-coupled Bose-Einstein condensates by K. Mukherjee et al.
The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations