Download Free Quantum Cluster Algebra Structures On Quantum Nilpotent Algebras Book in PDF and EPUB Free Download. You can read online Quantum Cluster Algebra Structures On Quantum Nilpotent Algebras and write the review.

All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts
View the abstract.
This volume contains the proceedings of the virtual AMS Special Session on Geometric and Algebraic Aspects of Quantum Groups and Related Topics, held from November 20–21, 2021. Noncommutative algebras and noncommutative algebraic geometry have been an active field of research for the past several decades, with many important applications in mathematical physics, representation theory, number theory, combinatorics, geometry, low-dimensional topology, and category theory. Papers in this volume contain original research, written by speakers and their collaborators. Many papers also discuss new concepts with detailed examples and current trends with novel and important results, all of which are invaluable contributions to the mathematics community.
This volume, dedicated to Bruno J. Müller, a renowned algebraist, is a collection of papers that provide a snapshot of the diversity of themes and applications that interest algebraists today. The papers highlight the latest progress in ring and module research and present work done on the frontiers of the topics discussed. In addition, selected expository articles are included to give algebraists and other mathematicians, including graduate students, an accessible introduction to areas that may be outside their own expertise.
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative -torus (with a skew symmetric real -matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces.
The authors consider a generic configuration of regions, consisting of a collection of distinct compact regions in which may be either regions with smooth boundaries disjoint from the others or regions which meet on their piecewise smooth boundaries in a generic way. They introduce a skeletal linking structure for the collection of regions which simultaneously captures the regions' individual shapes and geometric properties as well as the “positional geometry” of the collection. The linking structure extends in a minimal way the individual “skeletal structures” on each of the regions. This allows the authors to significantly extend the mathematical methods introduced for single regions to the configuration of regions.
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This fourth volume covers AdS/CFT, Virasoro and affine (super-)algebras.
In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive inequalities with respect to the Markov process given by the word length and with an even integer. Interpolation and differentiation also yield general hypercontrativity for via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part—which varies from one group to another—is implemented and tested on a computer. The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. The authors' second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan's property (T).
The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by “holes”) are present in the lattice. Their work generalizes to the discrete spatial setting the results obtained in Berestycki, Hamel, and Matuno (2009) for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized disturbances.
The authors introduce and study the class of groups graded by root systems. They prove that if is an irreducible classical root system of rank and is a group graded by , then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of . As the main application of this theorem the authors prove that for any reduced irreducible classical root system of rank and a finitely generated commutative ring with , the Steinberg group and the elementary Chevalley group have property . They also show that there exists a group with property which maps onto all finite simple groups of Lie type and rank , thereby providing a “unified” proof of expansion in these groups.