Download Free Quantum Antennas Book in PDF and EPUB Free Download. You can read online Quantum Antennas and write the review.

This book is about several questions regarding how to describe the quantization of the current density in an antenna and about the nature of the quantum electromagnetic field produced by such a quantum current density. The second quantized current density can be built out of the Dirac field of electrons and positrons while the free electromagnetic or photon field is built out of solutions to the wave equation with coefficients being operators, namely the creation and annihilation operators of the photons. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
This book is based on three undergraduate and postgraduate courses taught by the author on Matrix theory, Probability theory and Antenna theory over the past several years. It discusses Matrix theory, Probability theory and Antenna theory with solved problems. It will be useful to undergraduate and postgraduate students of Electronics and Communications Engineering. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan and Bhutan).
We are always surrounded by electromagnetic waves and fields of various spectra. This book explains basic electromagnetic theory with the help of design formulations i.e. mathematical background on antennas along with experimentations, which has made this book unique. The main purpose of this book is to embed mathematical EM theory of dielectric resonator antennas with experimental validation so that understanding of concepts takes place. Initially, basic understanding of philosophy of dielectric resonators has been discussed, then it is supported with mathematical modeling and later same is implemented with its prototype model along with experimentations. The modes theory gives important analysis on currents distribution, impedance analysis and radiation pattern in DRA. Circular polarization can built signal robustness, case studies on circular polarization has been included. Equivalent RLC circuit concept has been introduced. Challenges of switching from microwave to terahertz has been briefly discussed. Nano DRA will revolutionize the wireless technology. Nano DRA ,Terahertz DRA and Quantum DRA have analyzed and studied.
ANTENNA AND ARRAY TECHNOLOGIES FOR FUTURE WIRELESS ECOSYSTEMS Discover a timely and accessible resource on the latest antenna research driving new developments in the field In Antenna and Array Technologies for Future Wireless Ecosystems, distinguished academics and authors Drs. Y. Jay Guo and Richard W. Ziolkowski deliver a cutting-edge resource for researchers, academics, students, and engineers who need the latest research findings on the newest challenges facing antenna designers who will be creating the technology that drives future 6G and beyond wireless systems and networks. This timely and impactful book offers the fundamental knowledge that will facilitate new research activities in the antennas and applied electromagnetics communities, and conveys innovative and practical solutions to many wireless industry problems. Its international cohort of leading authors delivers their findings on a variety of advanced topics in antenna and array research, including metasurface antennas; electrically small directive antennas; RF, millimeter-wave and THz antennas and arrays; atom-based sensors, and arrays of quantum emitters. The book also includes resources that cover the important topics: A thorough introduction to various intelligent and low-cost beam scanning, beamforming and beam-reconfigurable array technologies to support dynamic networking of future systems An exploration of advanced techniques for analyzing large arrays, as well as an examination of advanced antenna-in-package technologies for future mm-wave systems Discussions of the latest research on electrically small and extremely large hybrid antenna arrays, and photonic beamforming networks to address spectrum scarcity in future systems Low form-factor, low energy-consumption, and wireless power transfer antennas for the Internet of Things (IoT) This book is the companion of the Wiley book by the same authors, Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications. Perfect for antenna engineers in academia and industry, Antenna and Array Technologies for Future Wireless Ecosystems will also be an essential resource in the libraries of senior undergraduate and graduate students studying antenna engineering applied electromagnetics and seeking a one-stop reference for state-of-the-art global antenna and antenna array research activities.
This book resolves fundamental questions of quantum theory and offers arguably the strongest evidence yet in support of string theory. It is essential reading for everyone in physics, physical mathematics, and the philosophy of science. The authors model electrons as an ensemble of strings subject to the laws of classical statistical mechanics. This model shows the Schrodinger equation to be the low speed descriptor of equilibrium and near-equilibrium states but not of quantum jumps. Like other statistical systems, the electron ensemble passes through all possible intrinsic states. As a high energy eigenstate electron ensemble passes through an appropriate structure, it regeneratively produces an encompassing standing energy field. Regenerative field buildup enables the electron to be a radiative band pass filter: it is an efficient radiator at the buildup frequency and phase, but all other frequencies and phases are blocked. When a matching external field trigger is applied depending upon therelative phasings, the standing energy is either absorbed or emitted with full directivity.
The book discusses the foundations of intelligent quantum information processing applied to several real-life engineering problems, including intelligent quantum systems, intelligent quantum communication, intelligent process optimization, and intelligent quantum distributed networks. This book: • Showcases a detailed overview of different quantum machine learning algorithmic frameworks. • Presents real-life case studies and applications. • Provides an in-depth analysis of quantum mechanical principles. • Provides a step-by-step guide in the build-up of quantum inspired/quantum intelligent information processing systems. • Provides a video demonstration on each chapter for better understanding. It will serve as an ideal reference text for graduate students and academic researchers in fields such as electrical engineering, electronics and communication engineering, computer engineering, and information technology.
The linear and nonlinear resonance behaviour of optical antennas (metallic nanostructures showing resonance behaviour at optical frequencies) made of gold and aluminum using electron-beam lithography is investigated. Specifically, it is of interest how the emission behaviour is changed by the coupling of two antenna arms via a small gap. Experimental techniques applied include dark-field spectroscopy and two-photon luminescence.
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.