Download Free Quantitative Structural Geology Book in PDF and EPUB Free Download. You can read online Quantitative Structural Geology and write the review.

A pioneering single-semester undergraduate textbook that balances descriptive and quantitative analysis of geological structures.
The book includes new material, in particular examples of 3-D models and techniques for using kinematic models to predict fault and ramp-anticline geometry. The book is geared toward the professional user concerned about the accuracy of an interpretation and the speed with which it can be obtained from incomplete data. Numerous analytical solutions are given that can be easily implemented with a pocket calculator or a spreadsheet.
A modern quantitative approach to structural geology and tectonics for advanced students and researchers.
"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--Provided by publisher.
This combination of text and lab book presents an entirely different approach to structural geology. Designed for undergraduate laboratory classes, it provides a step-by-step guide for solving geometric problems arising from structural field observations. The book discusses both traditional methods and cutting-edge approaches, with emphasis given to graphical methods and visualization techniques that support students in tackling challenging two- and three-dimensional problems. Numerous exercises encourage practice in using the techniques, and demonstrate how field observations can be converted into useful information about geological structures and the processes responsible for creating them. This updated fourth edition incorporates new material on stress, deformation, strain and flow, and the underlying mathematics of the subject. With stereonet plots and solutions to the exercises available online at www.cambridge.org/ragan, this book is a key resource for undergraduates, advanced students and researchers wanting to improve their practical skills in structural geology.
Presents a comprehensive and up-to-date account of the fundamental aspects of structural geology, emphasising both classical concepts and modern developments. A detailed account of the techniques of geometrical analysis is provided, giving a sound background to principles of geological deformation and in-depth analysis of mechanisms of formation of geological structures. Many new features are included such as detailed discussions on rotation of rigid inclusions and passive markers, boudinage (including chocolate tablet boudins, foliation boudins and shear fracture boudins), structural implications of basement-cover relations and time-relation between crystallation and deformation. The book presents the methods of structural analysis from microscopic to map scale, describes modern techniques used in field and laboratory and offers a balanced picture of modern structural geology as it emerges from combined field, experimental and theoretical studies. Hardback edition (0 080 41879 1) also available £50.00
This book helps a novice to explore the terrain independently. Geoscience fieldwork with a focus on structural geology and tectonics has become more important in the last few years from both academic and industrial perspectives. This book also works as a resource material for batches of students or geological survey professional undergoing training as parts of their course curriculum. Industry persons, on the other hand, can get a first-hand idea about what to expect in the field, in case no academic person is available with the team. This book focused on structural geology and tectonics compiles for the very first time terrains from several regions of the globe.
The trend towards a more quantitative approach in structural geology has stimulated the development of a number of techniques for determining the strain in deformed rocks of which the most widely used is one called the Rf/&fgr; method. With more than 100 applications of the technique published in the literature this is a timely work, describing as it does the practicalities of the method and its recent refinements. The comprehensive collection of standard graphs, indispensable for the determination of the strain, has never previously been widely available.
"This book presents quantitative treatments of a wide range of fundamental problems related to geochemistry and geology. It shows that trace elements, isotopes, and equations are integrative tools in modern geochemistry for studying various Earth processes." -- Back cover.
Rock fractures control many of Earth's dynamic processes, including plate-boundary development, tectonic earthquakes, volcanic eruptions, and fluid transport in the crust. An understanding of rock fractures is also essential for effective exploitation of natural resources such as ground water, geothermal water, and petroleum. This book combines results from fracture mechanics, materials science, rock mechanics, structural geology, hydrogeology, and fluid mechanics to explore and explain fracture processes and fluid transport in the crust. Basic concepts are developed from first principles and illustrated with worked examples linking models of geological processes to real field observations and measurements. Many additional examples and exercises are provided online, allowing readers to practise formulating and quantitative testing of models. Rock Fractures in Geological Processes is designed for courses at the advanced undergraduate and graduate level but also forms a vital resource for researchers and industry professionals concerned with fractures and fluid transport in the Earth's crust.