Download Free Quantitative Mri Of The Spinal Cord Book in PDF and EPUB Free Download. You can read online Quantitative Mri Of The Spinal Cord and write the review.

Quantitative MRI of the Spinal Cord is the first book focused on quantitative MRI techniques with specific application to the human spinal cord. This work includes coverage of diffusion-weighted imaging, magnetization transfer imaging, relaxometry, functional MRI, and spectroscopy. Although these methods have been successfully used in the brain for the past 20 years, their application in the spinal cord remains problematic due to important acquisition challenges (such as small cross-sectional size, motion, and susceptibility artifacts). To date, there is no consensus on how to apply these techniques; this book reviews and synthesizes state-of-the-art methods so users can successfully apply them to the spinal cord. Quantitative MRI of the Spinal Cord introduces the theory behind each quantitative technique, reviews each theory's applications in the human spinal cord and describes its pros and cons, and suggests a simple protocol for applying each quantitative technique to the spinal cord. - Chapters authored by international experts in the field of MRI of the spinal cord - Contains "cooking recipes—examples of imaging parameters for each quantitative technique—designed to aid researchers and clinicians in using them in practice - Ideal for clinical settings
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Established as the leading textbook on imaging diagnosis of brain and spine disorders, Magnetic Resonance Imaging of the Brain and Spine is now in its Fourth Edition. This thoroughly updated two-volume reference delivers cutting-edge information on nearly every aspect of clinical neuroradiology. Expert neuroradiologists, innovative renowned MRI physicists, and experienced leading clinical neurospecialists from all over the world show how to generate state-of-the-art images and define diagnoses from crucial clinical/pathologic MR imaging correlations for neurologic, neurosurgical, and psychiatric diseases spanning fetal CNS anomalies to disorders of the aging brain. Highlights of this edition include over 6,800 images of remarkable quality, more color images, and new information using advanced techniques, including perfusion and diffusion MRI and functional MRI. A companion Website will offer the fully searchable text and an image bank.
This open access book offers an essential overview of brain, head and neck, and spine imaging. Over the last few years, there have been considerable advances in this area, driven by both clinical and technological developments. Written by leading international experts and teachers, the chapters are disease-oriented and cover all relevant imaging modalities, with a focus on magnetic resonance imaging and computed tomography. The book also includes a synopsis of pediatric imaging. IDKD books are rewritten (not merely updated) every four years, which means they offer a comprehensive review of the state-of-the-art in imaging. The book is clearly structured and features learning objectives, abstracts, subheadings, tables and take-home points, supported by design elements to help readers navigate the text. It will particularly appeal to general radiologists, radiology residents, and interventional radiologists who want to update their diagnostic expertise, as well as clinicians from other specialties who are interested in imaging for their patient care.
In recent decades, the use of neuroimaging techniques has resulted in outstanding progress in the diagnosis and management of neurological diseases, and this is particularly true of those diseases that affect the white matter of the brain and spinal cord. This book, written by internationally acclaimed experts, comprises a series of comprehensive and up-to-date reviews on the use of MR imaging in these major neurological conditions. The diverse available MR techniques, such as magnetization transfer MRI, diffusion-weighted MRI, MR spectroscopy, functional MRI, cell-specific MRI, perfusion MRI, and microscopic imaging with ultra-high field MRI, offer an extraordinarily powerful means of gaining fundamental in vivo insights into disease processes. The strengths and weaknesses of all these techniques in the study of multiple sclerosis and other relevant diseases are extensively considered. After an introductory section on neuroimaging technology, subsequent sections address disorders of myelination, demyelinating diseases, immune-mediated disorders, and white matter disorders related to aging and other conditions. This book provides a valuable summary of the state of the art in the field, and defines important areas for future research.
Diffusion MRI remains the most comprehensive reference for understanding this rapidly evolving and powerful technology and is an essential handbook for designing, analyzing, and interpreting diffusion MR experiments. Diffusion imaging provides a unique window on human brain anatomy. This non-invasive technique continues to grow in popularity as a way to study brain pathways that could never before be investigated in vivo. This book covers the fundamental theory of diffusion imaging, discusses its most promising applications to basic and clinical neuroscience, and introduces cutting-edge methodological developments that will shape the field in coming years. Written by leading experts in the field, it places the exciting new results emerging from diffusion imaging in the context of classical anatomical techniques to show where diffusion studies might offer unique insights and where potential limitations lie. - Fully revised and updated edition of the first comprehensive reference on a powerful technique in brain imaging - Covers all aspects of a diffusion MRI study from acquisition through analysis to interpretation, and from fundamental theory to cutting-edge developments - New chapters covering connectomics, advanced diffusion acquisition, artifact removal, and applications to the neonatal brain - Provides practical advice on running an experiment - Includes discussion of applications in psychiatry, neurology, neurosurgery, and basic neuroscience - Full color throughout
An essential companion for busy professionals seeking to navigate stroke-related clinical situations successfully and make quick informed treatment decisions.
Intended for general neurologists as well as specialists in multiple sclerosis (MS) and imaging, this book provides comprehensive discussion of central nervous system (CNS) atrophy involving the brain and spinal cord, and both the chapter authors and topics have been selected to provide state-of-the-art reviews. Key issues covered in the book include pathogenesis and its mechanisms, technical aspects of MRI measurement, the relationship between CNS atrophy and other MRI metrics, clinical relevance, the association with neurobehavioral and genetic-immunologic components of MS, and the effects of disease-modifying therapies on tissue atrophy. Pros and cons of different technical approaches are discussed critically. Special attention is devoted to CNS atrophy as a clinically relevant biologic marker of the MS disease process.
This book provides an overview of the practical aspects of diffusion tensor imaging (DTI), from understanding the basis of the technique through selection of the right protocols, trouble-shooting data quality, and analyzing DTI data optimally. DTI is a non-invasive magnetic resonance imaging (MRI) technique for visualizing and quantifying tissue microstructure based on diffusion. The book discusses the theoretical background underlying DTI and advanced techniques based on higher-order models and multi-shell diffusion imaging. It covers the practical implementation of DTI; derivation of information from DTI data; and a range of clinical applications, including neurosurgical planning and the assessment of brain tumors. Its practical utility is enhanced by decision schemes and a fully annotated DTI brain atlas, including color fractional anisotropy maps and 3D tractography reconstructions of major white matter fiber bundles. Featuring contributions from leading specialists in the field of DTI, Diffusion Tensor Imaging: A Practical Handbook is a valuable resource for radiologists, neuroradiologists, MRI technicians and clinicians.
2004 BMA Medical Book Competition Winner (Radiology category) “This is an exciting book, with a new approach to use of the MRI scanner. It bridges the gap between clinical research and general neuro-radiological practice. It is accessible to the clinical radiologist, and yet thorough in its treatment of the underlying physics and of the science of measurement. It is likely to become a classic.” British Medical Association This indispensable 'how to' manual of quantitative MR is essential for anyone who wants to use the gamut of modern quantitative methods to measure the effects of neurological disease, its progression, and its response to treatment. It contains both the methodology and clinical applications, reflecting the increasing interest in quantitative MR in studying disease and its progression. The editor is an MR scientist with an international reputation for high quality research The contributions are written jointly by MR physicists and MR clinicians, producing a practical book for both the research and medical communities A practical book for both the research and medical communities “Paul Tofts has succeeded brilliantly in capturing the essence of what needs to become the future of radiology in particular, and medicine in general – quantitative measurements of disease.” Robert I. Grossman, M.D. New York, University School of Medicine (from the Foreword)