Download Free Quantitative Molecular Pharmacology And Informatics In Drug Discovery Book in PDF and EPUB Free Download. You can read online Quantitative Molecular Pharmacology And Informatics In Drug Discovery and write the review.

Quantitative Molecular Pharmacology and Informatics in Drug Discovery Michael Lutz, Section Head, Cheminformatics Group and Terry Kenakin, Principal Research Scientist, Glaxo Wellcome Research and Development, Research Triangle Park, NC, USA Quantitative Molecular Pharmacology and Informatics in Drug Discovery combines pharmacology, genetics and statistics to provide a complete guide to the modern drug discovery process. The book discusses the pharmacology of drug testing and provides a detailed description of the statistical methods used to analyze the resulting data. Application of genetic and genomic tools for identification of biological targets is reviewed in the context of drug discovery projects. Covering both the theoretical principles upon which the techniques are based and the practicalities of drug discovery, this informative guide. * outlines in step-by-step detail the advantages and disadvantages of each technology and approach and links these to the type of chemical target being sought after in the drug discovery process; and, * provides excellent demonstrations of how to use powerful pharmacological and statistical tools to optimize high-throughput screening assays. Written by two internationally known and well-regarded experts, this book is an essential reference for research and development scientists working in the pharmaceutical and biotechnology industries. It will also be useful for postgraduates studying pharmacology and applied statistics.
This textbook provides a fresh, comprehensive and accessible introduction to the rapidly expanding field of molecular pharmacology. Adopting a drug target-based, rather than the traditional organ/system based, approach this innovative guide reflects the current advances and research trend towards molecular based drug design, derived from a detailed understanding of chemical responses in the body. Drugs are then tailored to fit a treatment profile, rather than the traditional method of ‘trial and error’ drug discovery which focuses on testing chemicals on animals or cell cultures and matching their effects to treatments. Providing an invaluable resource for advanced under-graduate and MSc/PhD students, new researchers to the field and practitioners for continuing professional development, Molecular Pharmacology explores; recent advances and developments in the four major human drug target families (G-protein coupled receptors, ion channels, nuclear receptors and transporters), cloning of drug targets, transgenic animal technology, gene therapy, pharmacogenomics and looks at the role of calcium in the cell. Current - focuses on cutting edge techniques and approaches, including new methods to quantify biological activities in different systems and ways to interpret and understand pharmacological data. Cutting Edge - highlights advances in pharmacogenomics and explores how an individual’s genetic makeup influences their response to therapeutic drugs and the potential for harmful side effects. Applied - includes numerous, real-world examples and a detailed case-study based chapter which looks at current and possible future treatment strategies for cystic fibrosis. This case study considers the relative merits of both drug therapy for specific classes of mutation and gene therapy to correct the underlying defect. Accessible - contains a comprehensive glossary, suggestions for further reading at the end of each chapter and an associated website that provides a complete set of figures from within the book.
This first comprehensive survey to cover all pharmaceutically relevant topics provides a comprehensive introduction to this novel and revolutionary tool, presenting both concepts and application examples of biosimulated cells, organs and organisms. Following an introduction to the role of biosimulation in drug development, the authors go on to discuss the simulation of cells and tissues, as well as simulating drug action and effect. A further section is devoted to simulating networks and populations, and the whole is rounded off by a look at the potential for biosimulation in industrial drug development and for regulatory decisions. Part of the authors are members of the BioSim Network of Excellence that encompasses more than 40 academic institutions, pharmaceutical companies and regulatory authorities dealing with drug development; other contributors come from industry, resulting in a cross-disciplinary expert reference.
Drug-Acceptor Interactions: Modeling theoretical tools to test and evaluate experimental equilibrium effects suggests novel theoretical tools to test and evaluate drug interactions seen with combinatorial drug therapy. The book provides an in-depth, yet controversial, exploration of existing tools for analysis of dose-response studies at equilibrium or steady state. The book is recommended reading for post-graduate students and researchers engaged in the study of systems biology, networks, and the pharmacodynamics of natural or industrial drugs, as well as for medical clinicians interested in drug application and combinatorial drug therapy. Even people without mathematical skills will be able to follow the pros and cons of reaction schemes and their related distribution equations. Chapter 9 is a hands-on guide for software to plot, fit and analyze one’s own data.
Edited by the most prominent person in the field and top researchers at US pharmaceutical companies, this is a unique resource for drug developers and physiologists seeking a molecular-level understanding of ion channel pharmacology. After an introduction to the topic, the authors evaluate the structure and function of ion channels, as well as related drug interaction. A section on assay technologies is followed by a section each on calcium, sodium and potassium channels. Further chapters cover genetic and acquired channelopathies, before the book closes with a look at safety issues in ion channel drug development. For medicinal and pharmaceutical chemists, biochemists, molecular biologists and those working in the pharmaceutical industry.
Up to the last decade or so, most general modeling approaches to the study of molecular components of biological responses have required significant amount of computer time, expertise, and resources, as well as highly specialized and often custom-written programs. With Biomedical Applications of Computer Modeling you don't have to be a computer sci
Physiological, pharmacological and molecular biological data generated over the past three decades have demonstrated the existence of two major families of extracellular receptors, the P1, a family of four G-protein coupled receptors and the P2, a family of at least 12 receptors responsive to purine (ATP, ADP) and pyrimidine (UTP) nucleotides through which adenosine and ATP can function as extracellular messengers. The present two-part volume represents an integrated compendium of invited chapters by leading researchers in the area focusing on advances in the understanding of purinergic and pyrimidinergic signaling systems, their role(s) in tissue function and pathophysiology and advances in developing potential new medications based on the modulation of P1 and P2 receptor signaling processes. The volumes will thus provide the reader with a topical, comprehensive and integrated overview of this important area.
This book brings together contributions from internationally renowned experts in the biochip field. The authors present not only their latest research work, but also discuss current trends in biochip technology. Specific topics range from microarray technology and its applications to lab-on-a-chip technology.
Here is a broad overview of the central topics and issues in psychopharmacology, biological psychiatry and behavioral neurosciences, with information about developments in the field, including novel drugs and technologies. The more than 2000 entries are written by leading experts in pharmacology and psychiatry and comprise in-depth essays, illustrated with full-color figures, and are presented in a lucid style.
The newer research areas in pharmaceutical sciences, particularly molecular modeling and simulations, prompted a more efficient drug discovery process. Informatics integrated with pharmaceutical sciences (cheminformatics and bioinformatics) became an essential component of drug research. Drug informatics such as genomics and proteomics assists in the Rational Drug Design (RDD). This emerging discipline is known as “Computer-Aided Drug Design (CADD)”, which has profound application in rational drug design (RDD). The advanced and adequate practice in drug design informatics is essential for pharmacy graduates. Hence, a companion for acquiring knowledge on these concepts is vital. The students of B. Pharmacy, M. Pharmacy (Pharmaceutical Chemistry, Pharmacology, and Pharmaceutics), biotechnology, biomedical engineering and other interdisciplinary fields may find this book as a reference guide. The salient features of this book are: • Systematic and simple approach • Emphasis on traditional and modern drug design strategies • Comprehensive coverage for the current advances in the drug design • Experimental section to ensure hands-on-experience Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.