Download Free Quantitative Methods For Conservation Biology Book in PDF and EPUB Free Download. You can read online Quantitative Methods For Conservation Biology and write the review.

Reviews the quantitative tools used in the study of subjects such as biodiversity, resource management and endangered species preservation. Topics covered include population viability analysis, population dynamics, metapopulation models, estimating timing of extinctions, quasi-extinction and more.
Quantitative methods are needed in conservation biology more than ever as an increasing number of threatened species find their way onto international and national “red lists. ” Objective evaluation of population decline and extinction probability are required for sound decision making. Yet, as our colleague Selina Heppell points out, population viability analysis and other forms of formal risk assessment are underused in policy formation because of data uncertainty and a lack of standardized methodologies and unambiguous criteria (i. e. , “rules of thumb”). Models used in conservation biology range from those that are purely heuristic to some that are highly predictive. Model selection should be dependent on the questions being asked and the data that are available. We need to develop a toolbox of quantitative methods that can help scientists and managers with a wide range of systems and that are subject to varying levels of data uncertainty and environmental variability. The methods outlined in the following chapters represent many of the tools needed to fill that toolbox. When used in conjunction with adaptive management, they should provide information for improved monitoring, risk assessment, and evaluation of management alternatives. The first two chapters describe the application of methods for detecting trends and extinctions from sighting data. Presence/absence data are used in general linear and additive models in Chapters 3 and 4 to predict the extinction proneness of birds and to build habitat models for plants.
The goal of this book is to provide practical, intelligible, and intuitive explanations of population modelling to empirical ecologists and conservation biologists. Modelling methods that do not require large amounts of data (typically unavailable for endangered species) are emphasised. As such, the book is appropriate for undergraduate and graduate students interested in quantitative conservation biology, managers charged with preserving endangered species, and, in short, for any conservation biologist or ecologist seeking to better understand the analysis and modelling of population data.
An essential guide to quantitative research methods in ecology and conservation biology, accessible for even the most math-averse student or professional. Quantitative research techniques have become increasingly important in ecology and conservation biology, but the sheer breadth of methods that must be understood—from population modeling and probabilistic thinking to modern statistics, simulation, and data science—and a lack of computational or mathematics training have hindered quantitative literacy in these fields. In this book, ecologist Justin Kitzes addresses those challenges for students and practicing scientists alike. Requiring only basic algebra and the ability to use a spreadsheet, Handbook of Quantitative Ecology is designed to provide a practical, intuitive, and integrated introduction to widely used quantitative methods. Kitzes builds each chapter around a specific ecological problem and arrives, step by step, at a general principle through the process of solving that problem. Grouped into five broad categories—difference equations, probability, matrix models, likelihood statistics, and other numerical methods—the book introduces basic concepts, starting with exponential and logistic growth, and helps readers to understand the field’s more advanced subjects, such as bootstrapping, stochastic optimization, and cellular automata. Complete with online solutions to all numerical problems, Kitzes’s Handbook of Quantitative Ecology is an ideal coursebook for both undergraduate and graduate students of ecology, as well as a useful and necessary resource for mathematically out-of-practice scientists.
Conducting Research in Conservation is the first textbook on social science research methods written specifically for use in the expanding and increasingly multidisciplinary field of environmental conservation. The first section on planning a research project includes chapters on the need for social science research in conservation, defining a research topic, methodology, and sampling. Section two focuses on practical issues in carrying out fieldwork with local communities, from fieldwork preparation and data collection to the relationships between the researcher and the study community. Section three provides an in-depth focus on a range of social science methods including standard qualitative and quantitative methods such as participant observation, interviewing and questionnaires, and more advanced methods, such as ethnobiological methods for documenting local environmental knowledge and change, and participatory methods such as the ‘PRA’ toolbox. Section four then demonstrates how to analyze social science data qualitatively and quantitatively; and the final section outlines the writing-up process and what should happen after the end of the formal research project. This book is a comprehensive and accessible guide to social science research methods for students of conservation related subjects and practitioners trained in the natural sciences. It features practical worldwide examples of conservation-related research in different ecosystems such as forests; grasslands; marine and riverine systems; and farmland. Boxes provide definitions of key terms, practical tips, and brief narratives from students and practitioners describe the practical issues that they have faced in the field.
In a coherent and comprehensive set of chapters, a team of leading scientists describe the present state-of-the-art in spatial conservation planning methodology with a focus on operational definitions and methods, supported by the latest technological details and applications of publicly available software.
Quantitative methods specifically tailored for the marine biologist While there are countless texts published on quantitative methods and many texts that cover quantitative terrestrial ecology, this text fills the need for the special quantitative problems confronting marine biologists and biological oceanographers. The author combines common quantitative techniques with recent advances in quantitative methodology and then demonstrates how these techniques can be used to study marine organisms, their behaviors, and their interactions with the environment. Readers learn how to better design experiments and sampling, employ sophisticated mathematical techniques, and accurately interpret and communicate the results. Most of this text is written at an introductory level, with a few topics that advance to more complex themes. Among the topics covered are plot/plotless sampling, biometrics, experimental design, game theory, optimization, time trends, modeling, and environmental impact assessments. Even readers new to quantitative methods will find the material accessible, with plenty of features to engage their interest, promote learning, and put their knowledge into practice: * One or more examples are provided to illustrate each individual quantitative technique presented in the text * The accompanying CD-ROM features two multimedia programs, several statistical programs, help to run complex statistical programs, and additional information amplifying topics covered in the text * References lead readers to additional information to pursue individual topics in greater depth Quantitative Analysis of Marine Biological Communities, with its extensive use of examples, is ideal for undergraduate and graduate students in marine biology. Marine biologists, regardless of their level of experience, will also discover new approaches to quantitative analysis tailored to the particular needs of their field.
Environmental science (ecology, conservation, and resource management) is an increasingly quantitative field. A well-trained ecologist now needs to evaluate evidence generated from complex quantitative methods, and to apply these methods in their own research. Yet the existing books and academic coursework are not adequately serving most of the potential audience - instead they cater to the specialists who wish to focus on either mathematical or statistical aspects, and overwhelmingly appeal to those who already have confidence in their quantitative skills. At the same time, many texts lack an explicit emphasis on the epistemology of quantitative techniques. That is, how do we gain understanding about the real world from models that are so vastly simplified? This accessible textbook introduces quantitative ecology in a manner that aims to confront these limitations and thereby appeal to a far wider audience. It presents material in an informal, approachable, and encouraging manner that welcomes readers with any degree of confidence and prior training. It covers foundational topics in both mathematical and statistical ecology before describing how to implement these concepts to choose, use, and analyse models, providing guidance and worked examples in both spreadsheet format and R. The emphasis throughout is on the skilful interpretation of models to answer questions about the natural world. Introduction to Quantitative Ecology is suitable for advanced undergraduate students and incoming graduate students, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world ecology, conservation, and resource management scenarios.
An innovative introduction to ecology and evolution This unique textbook introduces undergraduate students to quantitative models and methods in ecology, behavioral ecology, evolutionary biology, and conservation. It explores the core concepts shared by these related fields using tools and practical skills such as experimental design, generating phylogenies, basic statistical inference, and persuasive grant writing. And contributors use examples from their own cutting-edge research, providing diverse views to engage students and broaden their understanding. This is the only textbook on the subject featuring a collaborative "active learning" approach that emphasizes hands-on learning. Every chapter has exercises that enable students to work directly with the material at their own pace and in small groups. Each problem includes data presented in a rich array of formats, which students use to answer questions that illustrate patterns, principles, and methods. Topics range from Hardy-Weinberg equilibrium and population effective size to optimal foraging and indices of biodiversity. The book also includes a comprehensive glossary. In addition to the editors, the contributors are James Beck, Cawas Behram Engineer, John Gaskin, Luke Harmon, Jon Hess, Jason Kolbe, Kenneth H. Kozak, Robert J. Robertson, Emily Silverman, Beth Sparks-Jackson, and Anton Weisstein. Provides experience with hypothesis testing, experimental design, and scientific reasoning Covers core quantitative models and methods in ecology, behavioral ecology, evolutionary biology, and conservation Turns "discussion sections" into "thinking labs" Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html
In the last two decades it has become increasingly clear that the spatial dimension is a critically important aspect of ecological dynamics. Ecologists are currently investing an enormous amount of effort in quantifying movement patterns of organisms. Connecting these data to general issues in metapopulation biology and landscape ecology, as well as to applied questions in conservation and natural resource management, however, has proved to be a non-trivial task. This book presents a systematic exposition of quantitative methods for analyzing and modeling movements of organisms in the field. Quantitative Analysis of Movement is intended for graduate students and researchers interested in spatial ecology, including applications to conservation, pest control, and fisheries. Models are a key ingredient in the analytical approaches developed in the book; however, the primary focus is not on mathematical methods, but on connections between models and data. The methodological approaches discussed in the book will be useful to ecologists working with all taxonomic groups. Case studies have been selected from a wide variety of organisms, including plants (seed dispersal, spatial spread of clonal plants), insects, and vertebrates (primarily, fish, birds, and mammals).