Download Free Quantitative Control Of Probabilistic Discrete Event Systems Book in PDF and EPUB Free Download. You can read online Quantitative Control Of Probabilistic Discrete Event Systems and write the review.

Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Discrete Event Systems: Analysis and Control is the proceedings of WODES2000 (the 5th Workshop on Discrete Event Systems, held in Ghent, Belgium, on August 21-23, 2000). This book provides a survey of the current state of the art in the field of modeling, analysis and control synthesis of discrete event systems, lecture notes for a mini course on sensitivity analysis for performance evaluation of timed discrete event systems, and 48 carefully selected papers covering all areas of discrete event theory and the most important applications domains. Topics include automata theory and supervisory control (12); Petri net based models for discrete event systems, and their control synthesis (11); (max,+) and timed automata models (9); applications papers related to scheduling, failure detection, and implementation of supervisory controllers (7); formal description of PLCs (6); and finally, stochastic models of discrete event systems (3).
This book constitutes the proceedings of the 18th International Conference on Quantitative Evaluation Systems, QEST 2021, held in Paris, France, in August 2021. The 21 full papers and 2 short papers presented together with 2 keynote papers were carefully reviewed and selected from 47 submissions. The papers are organized in the following topics: probabilistic model checking; quantitative models and metamodels: analysis and validation; queueing systems; learning and verification; simulation; performance evaluation; abstractions and aggregations; and stochastic models.
This book constitutes the proceedings of the 11th International Conference on Quantitative Evaluation of Systems, QEST 2014, held in Florence, Italy, in September 2014. The 24 full papers and 5 short papers included in this volume were carefully reviewed and selected from 61 submissions. They are organized in topical sections named: Kronecker and product form methods; hybrid systems; mean field/population analysis; models and tools; simulation; queueing, debugging and tools; process algebra and equivalences; automata and Markov process theory; applications, theory and tools; and probabilistic model checking.
Research of discrete event systems is strongly motivated by applications in flex ible manufacturing, in traffic control and in concurrent and real-time software verification and design, just to mention a few important areas. Discrete event system theory is a promising and dynamically developing area of both control theory and computer science. Discrete event systems are systems with non-numerically-valued states, inputs, and outputs. The approaches to the modelling and control of these systems can be roughly divided into two groups. The first group is concerned with the automatic design of controllers from formal specifications of logical requirements. This re search owes much to the pioneering work of P.J. Ramadge and W.M. Wonham at the beginning of the eighties. The second group deals with the analysis and op timization of system throughput, waiting time, and other performance measures for discrete event systems. The present book contains selected papers presented at the Joint Workshop on Discrete Event Systems (WODES'92) held in Prague, Czechoslovakia, on Au gust 26-28, 1992 and organized by the Institute of Information Theory and Au tomation of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia, by the Automatic Control Laboratory of the Swiss Federal Institute of Technology (ETH) , Zurich, Switzerland, and by the Department of Computing Science of the University of Groningen, Groningen, the Netherlands.
The 210 articles which are divided into 18 sections in this new reference work represent the most recent findings in cybernetics and systems research. It brings together contributions from leading scientists from all over the world — Europe, North America, South America, Asia, Africa and Australia. This volume therefore gives a broad spectrum of the ongoing research worldwide.Topics covered in the 18 sections are: General Systems Methodology; Mathematical Systems Theory; Computer Aided Process Interpretation; Fuzzy Sets, Approximate Reasoning and Knowledge-based Systems; Designing and Systems; Biocybernetics and Mathematical Biology; Cybernetics in Medicine; Cybernetics of Socioeconomic Systems; Systems, Management and Organization; Cybernetics of National Development; Communication and Computers; Connectionism and Cognitive Processing; Intelligent Autonomous Systems; Artificial Intelligence; Impacts of Artificial Intelligence.
Control of Discrete-event Systems provides a survey of the most important topics in the discrete-event systems theory with particular focus on finite-state automata, Petri nets and max-plus algebra. Coverage ranges from introductory material on the basic notions and definitions of discrete-event systems to more recent results. Special attention is given to results on supervisory control, state estimation and fault diagnosis of both centralized and distributed/decentralized systems developed in the framework of the Distributed Supervisory Control of Large Plants (DISC) project. Later parts of the text are devoted to the study of congested systems though fluidization, an over approximation allowing a much more efficient study of observation and control problems of timed Petri nets. Finally, the max-plus algebraic approach to the analysis and control of choice-free systems is also considered. Control of Discrete-event Systems provides an introduction to discrete-event systems for readers that are not familiar with this class of systems, but also provides an introduction to research problems and open issues of current interest to readers already familiar with them. Most of the material in this book has been presented during a Ph.D. school held in Cagliari, Italy, in June 2011.
Supervisory Control Theory (SCT) provides a tool to model and control human-engineered complex systems, such as computer networks, World Wide Web, identification and spread of malicious executables, and command, control, communication, and information systems. Although there are some excellent monographs and books on SCT to control and diagnose discrete-event systems, there is a need for a research monograph that provides a coherent quantitative treatment of SCT theory for decision and control of complex systems. This new monograph will assimilate many new concepts that have been recently reported or are in the process of being reported in open literature. The major objectives here are to present a) a quantitative approach, supported by a formal theory, for discrete-event decision and control of human-engineered complex systems; and b) a set of applications to emerging technological areas such as control of software systems, malicious executables, and complex engineering systems. The monograph will provide the necessary background materials in automata theory and languages for supervisory control. It will introduce a new paradigm of language measure to quantitatively compare the performance of different automata models of a physical system. A novel feature of this approach is to generate discrete-event robust optimal decision and control algorithms for both military and commercial systems.
Includes subconference "Prestigious Applications of Intelligent Systems (PAIS 2008)."