Download Free Quantitative Biology Of Endocytosis Book in PDF and EPUB Free Download. You can read online Quantitative Biology Of Endocytosis and write the review.

Clathrin-mediated endocytosis (CME) is a ubiquitous internalization process in eukaryotic cells. It consists of the formation of an approximately 50-nm diameter vesicle out of a flat membrane. Genetics, biochemistry, and microscopy experiments performed in the last four decades have been instrumental to discover and characterize major endocytic proteins in yeast and mammals. However, due to the highly dynamic nature of the endocytic assembly and its small size, many questions remain unresolved: how are endocytic proteins organized spatially and dynamically? How are forces produced and how are their directions controlled? How do the biochemical activities of endocytic proteins and the membrane shape and mechanics regulate each other? These questions are virtually impossible to visualize or measure directly with conventional approaches but thanks to new quantitative biology methods, it is now possible to infer the mechanisms of endocytosis in exquisite detail. This book introduces quantitative microscopy and mathematical modeling approaches that have been used to count the copy number of endocytic proteins, infer their localization with nanometer precision, and infer molecular and physical mechanisms that are involved in the robust formation of endocytic vesicles.
In this book, skilled experts provide the most up-to-date, step-by-step laboratory protocols for examining molecular machinery and biological functions of exocytosis and endocytosis in vitro and in vivo. The book is insightful to both newcomers and seasoned professionals. It offers a unique and highly practical guide to versatile laboratory tools developed to study various aspects of intracellular vesicle trafficking in simple model systems and living organisms.
This volume provides basic and cutting-edge methods and protocols to study the major characteristics of eukaryotic cells. Chapters detail the different pathways of endocytosis in vivo, real time imaging of endocytic steps, endocytosis in model organisms, super-resolution methods to follow proteins involved in exocytosis, specific protocols for exocytosis in specialized cells such as neutrophils or neuroendocrine cells, as well as secretion of exosomes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and clearly written, Exocytosis and Endocytosis: Methods and Protocols is a valuable resource for researchers in the fields of cell biology, neurology, immunology, oncology, and those interested in studying protein trafficking and signal regulation.
Nanoparticle therapeutics: Production Technologies, Types of Nanoparticles, and Regulatory Aspects employs unique principles for applications in cell-based therapeutics, diagnostics and mechanistics for the study of organ physiology, disease etiology and drug screening of advanced nanoparticles and nanomaterials. The book focuses on the extrapolation of bioengineering tools in the domain of nanotechnology and nanoparticles therapeutics, fabrication, characterization and drug delivery aspects. It acquaints scientists and researchers on the experiential and experimental aspects of nanoparticles and nanotechnology to equip their rational application in various fields, especially in differential diagnoses and in the treatment of diverse diseased states. This complete resource provides a holistic understanding of the principle behind formation, characterization, applications, regulations and toxicity of nanoparticles employing myriad principles of nanotechnology. Investigators, pharmaceutical researchers, and advanced students working on technology advancement in the areas of designing targeted therapies, nanoscale imaging systems and diagnostic modalities in human diseases where nanoparticles can be used as a critical tool for technology advancement in drug delivery systems will find this book useful. - Brings together the novel applications of nanotechnology in biological fields - Explores perspectives on technologies through highly organized tables, illustrative figures and flow charts - Addresses key multidisciplinary challenges faced by nanotechnologists to foster collaboration among biologists, chemists, physicists, engineers and clinicians
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.
The much-anticipated 3rd edition of Cell Biology delivers comprehensive, clearly written, and richly illustrated content to today's students, all in a user-friendly format. Relevant to both research and clinical practice, this rich resource covers key principles of cellular function and uses them to explain how molecular defects lead to cellular dysfunction and cause human disease. Concise text and visually amazing graphics simplify complex information and help readers make the most of their study time. - Clearly written format incorporates rich illustrations, diagrams, and charts. - Uses real examples to illustrate key cell biology concepts. - Includes beneficial cell physiology coverage. - Clinically oriented text relates cell biology to pathophysiology and medicine. - Takes a mechanistic approach to molecular processes. - Major new didactic chapter flow leads with the latest on genome organization, gene expression and RNA processing. - Boasts exciting new content including the evolutionary origin of eukaryotes, super resolution fluorescence microscopy, cryo-electron microscopy, gene editing by CRISPR/Cas9, contributions of high throughput DNA sequencing to understand genome organization and gene expression, microRNAs, IncRNAs, membrane-shaping proteins, organelle-organelle contact sites, microbiota, autophagy, ERAD, motor protein mechanisms, stem cells, and cell cycle regulation. - Features specially expanded coverage of genome sequencing and regulation, endocytosis, cancer genomics, the cytoskeleton, DNA damage response, necroptosis, and RNA processing. - Includes hundreds of new and updated diagrams and micrographs,plus fifty new protein and RNA structures to explain molecular mechanisms in unprecedented detail. - Student Consult eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, images, and over a dozen animations from the book on a variety of devices.
"Cell biology is becoming an increasingly quantitative field, as technical advances mean researchers now routinely capture vast amounts of data. This handbook is an essential guide to the computational approaches, image processing and analysis techniques, and basic programming skills that are now part of the skill set of anyone working in the field"--
This book provides an update on the latest development in the field of microRNAs in cancer research with an emphasis on translational research. Since the early 2000s, microRNAs have been recognized as important and ubiquitous regulators of gene expression. Soon it became evident that their deregulation can cause human diseases including cancer. This book focuses on the emerging opportunities for the application of microRNA research in clinical practice. In this context, computer models are presented that can help to identify novel biomarkers, e.g. in circulating microRNAs, and tools that can help to design microRNA-based therapeutic interventions. Other chapters evaluate the role of microRNAs in immunotherapy, immune responses and drug resistance. Covering key topics on microRNAs in cancer research this book is a valuable resource for both emerging and established microRNA researchers who want to explore the potential of microRNAs as therapeutic targets or co-adjuvants in cancer therapies.
The Computational Methods in Systems Biology (CMSB) workshop series was established in 2003 by Corrado Priami. The purpose of the workshop series is to help catalyze the convergence between computer scientists interested in language design, concurrency theory, software engineering or program verification, and physicists, mathematicians and biologists interested in the systems-level understanding of cellular processes. Systems biology was perceived as being increasingly in search of sophisticated modeling frameworks whether for representing and processing syst- level dynamics or for model analysis, comparison and refinement. One has here a clear-cut case of a must-explore field of application for the formal methods developed in computer science in the last decade. This proceedings consists of papers from the CMSB 2003 workshop. A good third of the 24 papers published here have a distinct formal methods origin; we take this as a confirmation that a synergy is building that will help solidify CMSB as a forum for cross-community exchange, thereby opening new theoretical avenues and making the field less of a potential application and more of a real one. Publication in Springer's new Lecture Notes in Bioinformatics (LNBI) offers particular visibility and impact, which we gratefully acknowledge. Our keynote speakers, Alfonso Valencia and Trey Ideker, gave challenging and somewhat humbling lectures: they made it clear that strong applications to systems biology are still some way ahead. We thank them all the more for accepting the invitation to speak and for the clarity and excitement they brought to the conference.