Download Free Quantitative Aspects Of Magnetospheric Physics Book in PDF and EPUB Free Download. You can read online Quantitative Aspects Of Magnetospheric Physics and write the review.

The discovery of the earth's radiation belts in 1957 marked the beginning of what is now known as magnetospheric physics. The field has evolved normally from an early discovery phase through a period of exploration and into an era of quantitative studies of the dynamics of magnetized plasmas as they occur in nature. Such environments are common throughout the universe and have been studied in varying detail at the sun, the planets, pulsars, and certain radio galaxies. The purpose of this book is to describe basic quantitative aspects of magnetospheric physics. We use selected examples from the earth's magnetosphere to show how theory and data together form a quantitative framework for magnetospheric research. We have tried to organize the material along the philosophy of starting simply and adding com plexity only as necessary. We have avoided controversial and relatively new research topics and have tried to use as examples physical processes generally accepted as important within the earth's magnetospheric system. However, even in some of our examples, the question of whether the physical process applied to a particular problem is the dominant process, has yet to be answered.
This textbook was developed to provide seniors and first-year graduate students in physical sciences with a general knowledge of electrodynamic phenomena in space. Since the launch of the first unmanned satellite in 1957, experiments have been performed to study the behavior of electromagnetic fields and charged particles. There is now a considerable amount of data on hand, and many articles, including excellent review articles, have been written for the specialists. However, for students, new researchers, and non-specialists, a need still exists for a book that integrates these observations in a coherent way. This book is an attempt to meet that need by using the theory of classical electrodynamics to unify space observations. The contents of this book are based on classroom notes developed for an introductory space physics course that the author has taught for many years at the University of Washington. Students taking the course normally have had an undergraduate course in electricity and magnetism but they come with very little knowledge about space.
The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction. - Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer - More than 200 figures illustrate the text - Includes a color insert
Treatise on Geophysics: Geomagnetism, Volume 5, provides an overview of the most important aspects of geomagnetism. The book begins by tracing the history of the study of geomagnetism. It then reviews global models of the Earth's magnetic field; the main sources of external magnetic field contributions; and the instruments and practices used to observe and measure the full range of features of the geomagnetic field. It discusses the origins of current knowledge of the secular variation of the Earth's magnetic field; crustal magnetism; geomagnetic excursions; the study of geophysical electromagnetic induction; the magnetization process; and the status of recent magnetic field data and their applications. The remaining chapters cover the geometry of the geomagnetic field and its temporal variability as recorded in volcanic and sedimentary rocks over the past few million years; the ocean crust as a recorder of geomagnetic field variations; and the theoretical basis for paleointensity experiments in igneous and sedimentary environments. The final chapter explains the concept of true polar wander (TPW), defined as shifts in the geographic location of Earth's daily rotation axis and/or by fluctuations in the spin rate (length of day anomalies). - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert
A modern treatment of the physics and phenomena of the ionosphere, beginning with the basics of radio propagation and the use of radio techniques in ionospheric studies. Ample cross-referencing, chapter summaries and reference lists make this book an invaluable aid for graduate students, ionospheric physicists and radio engineers.
Astronomy and Astrophysics Abstracts aims to present a comprehensive documen tation of the literature concerning all aspects of astronomy, astrophysics, and their border fields. It is devoted to the recording, summarizing, and indexing of the relevant publications throughout the world. Astronomy and Astrophysics Abstracts is prepared by a special department of the Astronomisches Rechen-Institut under the auspices of the International Astronomical Union. Volume 39 records literature published in 1985 and received before August 15, 1985. Some older documents which we received late and which are not surveyed in earlier volumes are included too. We acknowledge with thanks contributions of our colleagues all over the world. We also express our gratitude to all organiza tions, observatories, and publishers which provide us with complimentary copies of their publications. On account of the introduction of an object index the scope of index information will be considerably enlarged beginning with this volume. In connection with the subject index an additional source to satisfy the needs of retrieval is opened up. Starting with Volume 33, all the recording, correction, and data processing work was done by means of computers. The recording was done by our technical staff members Ms. Helga Ballmann, Ms. Mona El-Choura, Ms. Monika Kohl, Ms. Sylvia Matyssek. Ms. Karin Burkhardt, Ms. Susanne Schlotelburg, and Mr. Stefan Wagner supported our task by careful proofreading. It is a pleasure to thank them all for their encouragement. Heidelberg, September 1985 The Editors Contents Introduction . . . . . . . . . . . .
Fundamentals of Space Systems was developed to satisfy two objectives: the first is to provide a text suitable for use in an advanced undergraduate or beginning graduate course in both space systems engineering and space system design. The second is to be a primer and reference book for space professionals wishing to broaden their capabilities to develop, manage the development, or operate space systems. The authors of the individual chapters are practicing engineers that have had extensive experience in developing sophisticated experimental and operational spacecraft systems in addition to having experience teaching the subject material. The text presents the fundamentals of all the subsystems of a spacecraft missions and includes illustrative examples drawn from actual experience to enhance the learning experience. It includes a chapter on each of the relevant major disciplines and subsystems including space systems engineering, space environment, astrodynamics, propulsion and flight mechanics, attitude determination and control, power systems, thermal control, configuration management and structures, communications, command and telemetry, data processing, embedded flight software, survuvability and reliability, integration and test, mission operations, and the initial conceptual design of a typical small spacecraft mission.
This book is a study of plasma waves which are observed in the earth's magnetosphere. The emphasis is on a thorough, but concise, treatment of the necessary theory and the use of this theory to understand the manifold varieties of waves which are observed by ground-based instruments and by satellites. We restrict our treatment to waves with wavelengths short compared with the spatial scales of the background plasma in the mag netosphere. By so doing we exclude large scale magnetohydrodynamic phenomena such as ULF pulsations in the Pc2-5 ranges. The field is an active one and we cannot hope to discuss every wave phenomenon ever observed in the magnetosphere! We try instead to give a good treatment of phenomena which are well understood, and which illustrate as many different parts of the theory as possible. It is thus hoped to put the reader in a position to understand the current literature. The treatment is aimed at a beginning graduate student in the field but it is hoped that it will also be of use as a reference to established workers. A knowledge of electromagnetic theory and some elementary plasma physics is assumed. The mathematical background required in cludes a knowledge of vector calculus, linear algebra, and Fourier trans form theory encountered in standard undergraduate physics curricula. A reasonable acquaintance with the theory of functions of a complex vari able including contour integration and the residue theorem is assumed.
This latest addition to the Studies in Geophysics series explores in scientific detail the phenomenon of lightning, cloud, and thunderstorm electricity, and global and regional electrical processes. Consisting of 16 papers by outstanding experts in a number of fields, this volume compiles and reviews many recent advances in such research areas as meteorology, chemistry, electrical engineering, and physics and projects how new knowledge could be applied to benefit mankind.
James L. Burch·C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1–2, 1–2. DOI: 10. 1007/s11214-009-9532-7 © Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail. Because of ground segment constraints, this proposal did not materialize. In view of the great depth and breadth of plasmaspheric research and numerous papers published on the plasmasphere since the CLUSTER launch, this choice certainly was a judicious one. The fact that the plasmasphere was one of the prime targets in the inner magnetosphere for IMAGE provided a unique opportunity to make great strides using the new and comp- mentary measurements of the two missions. IMAGE, with sensitive EUV cameras, could for the rst time make global images of the plasmasphere and show its great variability d- ing storm-time. CLUSTER, with four-spacecraft, could analyze in situ spatial and temporal structures at the plasmapause that are particularly important in such a dynamic system.