Download Free Quantitative Analysis Of Neuroanatomy Book in PDF and EPUB Free Download. You can read online Quantitative Analysis Of Neuroanatomy and write the review.

The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. Large-scale projects were recently launched with the aim of providing infrastructure for brain simulations. These projects will increase the need for a precise understanding of brain structure, e.g., through statistical analysis and models. From articles in this Research Topic, we identify three main themes that clearly illustrate how new quantitative approaches are helping advance our understanding of neural structure and function. First, new approaches to reconstruct neurons and circuits from empirical data are aiding neuroanatomical mapping. Second, methods are introduced to improve understanding of the underlying principles of organization. Third, by combining existing knowledge from lower levels of organization, models can be used to make testable predictions about a higher-level organization where knowledge is absent or poor. This latter approach is useful for examining statistical properties of specific network connectivity when current experimental methods have not yet been able to fully reconstruct whole circuits of more than a few hundred neurons.
Diffusion MRI remains the most comprehensive reference for understanding this rapidly evolving and powerful technology and is an essential handbook for designing, analyzing, and interpreting diffusion MR experiments. Diffusion imaging provides a unique window on human brain anatomy. This non-invasive technique continues to grow in popularity as a way to study brain pathways that could never before be investigated in vivo. This book covers the fundamental theory of diffusion imaging, discusses its most promising applications to basic and clinical neuroscience, and introduces cutting-edge methodological developments that will shape the field in coming years. Written by leading experts in the field, it places the exciting new results emerging from diffusion imaging in the context of classical anatomical techniques to show where diffusion studies might offer unique insights and where potential limitations lie. - Fully revised and updated edition of the first comprehensive reference on a powerful technique in brain imaging - Covers all aspects of a diffusion MRI study from acquisition through analysis to interpretation, and from fundamental theory to cutting-edge developments - New chapters covering connectomics, advanced diffusion acquisition, artifact removal, and applications to the neonatal brain - Provides practical advice on running an experiment - Includes discussion of applications in psychiatry, neurology, neurosurgery, and basic neuroscience - Full color throughout
In Computational Neuroanatomy: Principles and Methods, the path-breaking investigators who founded the field review the principles and key techniques available to begin the creation of anatomically accurate and complete models of the brain. Combining the vast, data-rich field of anatomy with the computational power of novel hardware, software, and computer graphics, these pioneering investigators lead the reader from the subcellular details of dendritic branching and firing to system-level assemblies and models.
A comprehensive and up-to-date reference that deals with methods of evaluation of structure and function of the nervous system, both in vitro and in vivo. Part I considers in vitro and ex vivo applications, beginning with the fundamentals of the autoradiographic technique followed by autoradiography and image analysis. Part II discusses several of the latest methods used in evaluating cerebral structure and function in vivo and recent advances in PET, magnetic resonance imaging and biomagnetism. Part III examines applications for quantification of the components of neurons and synapses and considers two- and three-dimensional methods of neuronal reconstruction. Also features the latest advances in stereology.
Neuroanatomical Research Techniques discusses developments in major neuroanatomical research techniques. The book is organized into four parts. Part I deals generally with the preparation and study of brain tissue. It includes a chapter on the microscope, discussing optical magnification, limitations of microscopy, and optical contrasting methods. Other chapters summarize basic techniques for tissue preparation and sectioning; present guidelines for a number of standard, but essential, staining procedures; and present sophisticated and contemporary computer techniques that are proving to be invaluable as neuroanatomy evolves from a qualitative to a quantitative discipline. Part II deals with techniques often used for the study of normal tissue. These include the Golgi method, fluorescence histochemistry, techniques for staining single neurons, and the use of the electron microscope. Part III presents techniques for studying intrinsic connections of the nervous system. These include techniques for silver impregnation of degenerating fibers; autoradiographic technique for studying axonal projections; and somatopetal movement of horseradish peroxidase as a tool for studying connections and neuron morphology. Part IV discusses the interpretation of results from neuroanatomical research techniques and presents examples of the applications of neuroanatomical methods to major problems in physiological psychology.
A practical guide to the most important and up-to-date techniques used in experimental neuroanatomy. It should be of use to anyone wishing to apply these important techniques, especially neuroscientists and neuroanatomists.
The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website. By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.
Many studies of the neural bases of language processes are now conducted with functional and structural neuroimaging. Research is often compromised because of difficulties in identifying the core structures in the face of the complex morphology of these regions of the brain. Although there are many books on the cognitive aspects of language and also on neurolinguistics and aphasiology, Neuroanatomy of Language Regions of the Human Brain is the first anatomical atlas that focuses on the core regions of the cerebral cortex involved in language processing. This atlas is a richly illustrated guide for scientists interested in the gross morphology of the sulci and gyri of the core language regions, in the cytoarchitecture of the relevant cortical areas, and in the connectivity of these areas. Data from diffusion MRI and resting-state connectivity are integrated iwth critical experimental anatomical data about homologous areas in the macaque monkey to provide the latest information on the connectivity of the language-relevant cortical areas of the brain. Although the anatomical connectivity data from studies on the macaque monkey provide the most detailed information, they are often neglected because of difficulties in interpreting the terminology used and in making the monkey-to-human comparison. This atlas helps investigators interpret this important source of information. Neuroanatomy of Language Regions of the Human Brain will assist investigators of the neural bases of language in increasing the anatomical sophistication of their research adn in evaluating studies of language and the brain. - Abundantly illustrated with photographs, 3-D MRI reconstructions, and sections to represent the morphology of the sulci and gyri in the frontal, temporal, and parietal regions involved in language processing - Photomicrographs showing the cytoarchitecture of cortical areas involved in language processing - Series of coronal, sagittal, and horizontal sections identifying the sulci and gyri to assist language investigators using structural and functional neuroimaging techniques - All images accompanied by brief commentaries to help users navigate the complexities of the anatomy - Integration of data from diffusion MRI and resting-state connectivity with critical experimental anatomical data on the connectivity of homologous areas in the macaque monkey