Download Free Quantifying Greenhouse Gas Emissions From Atmospheric Measurements Book in PDF and EPUB Free Download. You can read online Quantifying Greenhouse Gas Emissions From Atmospheric Measurements and write the review.

Emissions reduction legislation relies upon 'bottom-up' accounting of industrial and biogenic greenhouse-gas (GHG) emissions at their sources. Yet, even for relatively well constrained industrial GHGs, global emissions based on 'top-down' methods that use atmospheric measurements often agree poorly with the reported bottom-up emissions. For emissions reduction legislation to be effective, it is essential that these discrepancies be resolved. Because emissions are regulated nationally or regionally, not globally, top-down estimates must also be determined at these scales. High-frequency atmospheric GHG measurements at well-chosen station locations record 'pollution events' above the background values that result from regional emissions. By combining such measurements with inverse methods and atmospheric transport and chemistry models, it is possible to map and quantify regional emissions. Even with the sparse current network of measurement stations and current inverse-modelling techniques, it is possible to rival the accuracies of regional 'bottom-up' emission estimates for some GHGs. But meeting the verification goals of emissions reduction legislation will require major increases in the density and types of atmospheric observations, as well as expanded inverse-modelling capabilities. The cost of this effort would be minor when compared with current investments in carbon-equivalent trading, and would reduce the volatility of that market and increase investment in emissions reduction.
​​This book provides standards and guidelines for quantifying greenhouse gas emissions and removals in smallholder agricultural systems and comparing options for climate change mitigation based on emission reductions and livelihood trade-offs. Globally, agriculture is directly responsible for about 11% of annual greenhouse gas (GHG) emissions and induces an additional 17% through land use change, mostly in developing countries. Farms in the developing countries of sub-Saharan Africa and Asia are predominately managed by smallholders, with 80% of land holdings smaller than ten hectares. However, little to no information exists on greenhouse gas emissions and mitigation potentials in smallholder agriculture. Greenhouse gas measurements in agriculture are expensive, time consuming, and error prone, challenges only exacerbated by the heterogeneity of smallholder systems and landscapes. Concerns over methodological rigor, measurement costs, and the diversity of approaches, coupled with the demand for robust information suggest it is germane for the scientific community to establish standards of measurements for quantifying GHG emissions from smallholder agriculture. Standard guidelines for use by scientists, development organizations will help generate reliable data on emissions baselines and allow rigorous comparisons of mitigation options. The guidelines described in this book, developed by the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS) and partners, are intended to inform anyone conducting field measurements of agricultural greenhouse gas sources and sinks, especially to develop IPCC Tier 2 emission factors or to compare mitigation options in smallholder systems.
The world's nations are moving toward agreements that will bind us together in an effort to limit future greenhouse gas emissions. With such agreements will come the need for all nations to make accurate estimates of greenhouse gas emissions and to monitor changes over time. In this context, the present book focuses on the greenhouse gases that result from human activities, have long lifetimes in the atmosphere and thus will change global climate for decades to millennia or more, and are currently included in international agreements. The book devotes considerably more space to CO2 than to the other gases because CO2 is the largest single contributor to global climate change and is thus the focus of many mitigation efforts. Only data in the public domain were considered because public access and transparency are necessary to build trust in a climate treaty. The book concludes that each country could estimate fossil-fuel CO2 emissions accurately enough to support monitoring of a climate treaty. However, current methods are not sufficiently accurate to check these self-reported estimates against independent data or to estimate other greenhouse gas emissions. Strategic investments would, within 5 years, improve reporting of emissions by countries and yield a useful capability for independent verification of greenhouse gas emissions reported by countries.
The GHG Protocol Corporate Accounting and Reporting Standard helps companies and other organizations to identify, calculate, and report GHG emissions. It is designed to set the standard for accurate, complete, consistent, relevant and transparent accounting and reporting of GHG emissions.
Anthropogenic greenhouse gas (GHG) emissions enhance the atmospheric greenhouse effect, tend to increase the average global temperature, and contribute to global climate change. Those consequences motivate the establishment of regulatory frameworks to control and reduce GHG emissions. The credibility of emissions regulations depends on reliable, independent methods for long-term monitoring, verification and accounting of the actual emissions of market participants. Therefore the objectives of the present study are: (1) to evaluate the performance of state of the art trace gas dispersion models for the atmospheric boundary layer; (2) to develop novel measurement and modeling techniques for quantifying GHG emissions from spatially distributed sources using a top-down approach. Top-down methods combine atmospheric measurements of GHG concentration with meteorological data, and inverse transport models to quantify emissions sources. The ability of Weather Research and Forecasting, large-eddy simulation (WRF-LES) to model passive scalar dispersion from continuous sources in the atmospheric boundary layer was investigated. WRF-LES profiles of mean and fluctuating concentration in the daytime convective boundary layer were similar to data from laboratory experiments and other LES models. Poor turbulence resolution near the surface in neutral boundary layer simulations caused under prediction of mean dispersion in the crosswind direction, and over prediction of concentration variance in the surface layer. WRF-LES simulations also showed that the concentration intermittency factor is a promising metric for detecting source location using atmospheric measurements. A source determination model was developed to predict the location and strength of continuous, surface level, trace gas sources using concentration and turbulence measurements at two locations. The need for measurements at only two locations is advantageous for GHG monitoring applications where large sensor arrays are unfeasible due to high equipment costs and practical constraints on sensor placement. Atmospheric measurements of turbulence and methane concentration made during an outdoor, controlled release experiment were used to demonstrate the feasibility of the source determination model. The model predicted trace gas flux with less than 50% uncertainty, and provided an upper bound for fluxes from localized sources. The model can be used for detection and continuous, long-term monitoring of fugitive GHG emissions.
This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and the German Science Foundation research unit DASIM (Denitrification in Agricultural Soils: Integrated control and Modelling at various scales) and other institutes. It presents protocols, methodologies and standard operating procedures (SOPs) for measuring GHGs from different agroecosystems and animals using isotopic and related techniques that can also be used to validate climate-smart agricultural practices to mitigate GHGs. The material featured is useful for beginners in the field wanting an overview of the current methodologies, but also for experts who need hands-on descriptions of said methodologies. The book is written in form of a monograph and consists of eight chapters.
Understanding, quantifying, and tracking atmospheric methane and emissions is essential for addressing concerns and informing decisions that affect the climate, economy, and human health and safety. Atmospheric methane is a potent greenhouse gas (GHG) that contributes to global warming. While carbon dioxide is by far the dominant cause of the rise in global average temperatures, methane also plays a significant role because it absorbs more energy per unit mass than carbon dioxide does, giving it a disproportionately large effect on global radiative forcing. In addition to contributing to climate change, methane also affects human health as a precursor to ozone pollution in the lower atmosphere. Improving Characterization of Anthropogenic Methane Emissions in the United States summarizes the current state of understanding of methane emissions sources and the measurement approaches and evaluates opportunities for methodological and inventory development improvements. This report will inform future research agendas of various U.S. agencies, including NOAA, the EPA, the DOE, NASA, the U.S. Department of Agriculture (USDA), and the National Science Foundation (NSF).
The book provides an analysis of impacts of climate change on water for agriculture, and the adaptation strategies in water management to deal with these impacts. Chapters include an assessment at global level, with details on impacts in various countries. Adaptation measures including groundwater management, water storage, small and large scale irrigation to support agriculture and aquaculture are presented. Agricultural implications of sea level rise, as a subsequent impact of climate change, are also examined.
Microbiological basic of NO and N2O production and consumption in soil; Factors controlling NOx emissions from soils; Control of methane production in terrestrial ecosystems; Biological sinks of methane; What regulates production and consumption of trace gases in ecosystems: biology or physicochemistry?; Regional extrapolation of trace gas flux based on soil and ecosystems; Regional extrapolation: Vegetation-atmosphere approach; Global-scale extrapolation: a critical assessment; Aircraft-based measurements of trace gas fluxes; Extrapolation of flux measurements to regional and global scales; Chamber and isotop techniques; Micrometeorological techniques for the measurement of trace gas exchange; Methane flux measurements: methods and results; Fluxes of NOx abovesoil and vegetation; What are the relative roles of biological production, micrometeorology, and photochemistry in controlling the flux of trace gases between terrestrial ecosystems and the atmosphere?; Atmospheric deposition and nutrient cycling; Global climate and trace gas composition: from atmospheric history to the century; Experimental design for studying atmosphere interactions; Trace gas exchange and phsical climate: Critical interactions; Research priorities for studies on trace gas exchange.
Environmental Carbon Footprints: Industrial Case Studies provides a wide range of industrial case-studies, beginning with textiles, energy systems and bio-fuels. Each footprint is associated with background information, scientific consensus and the reason behind its invention, methodological framework, assessment checklist, calculation tool/technique, applications, challenges and limitations. More importantly, applications of each indicator/framework in various industrial sectors and their associated challenges are presented. As case studies are the most flexible of all research designs, this book allows researchers to retain the holistic characteristics of real-life events while investigating empirical events. Includes case studies from various industries, such as textiles, energy systems and conventional and bio-fuels Provides the calculation tool/technique, applications, challenges and limitations for determining carbon footprints on an industry by industry basis Presents the background information, scientific consensus and reason behind each case study