Download Free Quality Of Indoor Air Quality Of Life Book in PDF and EPUB Free Download. You can read online Quality Of Indoor Air Quality Of Life and write the review.

People spend most of their time indoors, and indoor air pollutants can cause both long and short term health effects. Awareness of indoor air pollution as an environmental issue, however, is relatively new. This book has been prepared to offer an up-to-date, comprehensive reference manual on indoor air quality to scientists and professionals active in this area. The intention of the book is to bring together a collection of contributions from specialists in the specific disciplines of indoor air quality, covering all points of view from various angles, from building design and building sciences, to health effects and medical diagnosis, toxicology of indoor air pollutants, and air sampling and analysis. One of the characteristics of this book is the multidisciplinary approach that integrates the expertise of medical doctors, architects, engineers, chemists, biologists, physicists and toxicologists. The resulting product is of great educational value and recommended for consultation as well as teaching purposes. The panel of conrtibuting authors includes top experts on indoor air worldwide, who have participated in international workshops and led the development of indoor air sciences over the recent years.
People live in indoor environment about 90% of lifetime and an adult inhales about 15 kg air each day, over 75% of the human body’s daily mass intake (air, food, water). Therefore, indoor air quality (IAQ) is very important to human health. This book provides the basic knowledge of IAQ and highlights the research achievements in the past two decades. It covers the following 12 sections: introduction, indoor air chemicals, indoor air particles, measurement and evaluation, source/sink characteristics, indoor chemistry, human exposure to indoor pollutants, health effects and health risk assessment, IAQ and cognitive performance, standards and guidelines, IAQ control, and air quality in various indoor environments. It provides a combination of an introduction to various aspects on IAQ studies, the current state-of-knowledge, various advances and the perspective of IAQ studies. It will be very helpful for the researchers and technicians in the IAQ and the related fields. It is also useful for experts in other fields and general readers who want to obtain a basic understanding of and research advances in the field of IAQ. A group of experts in IAQ research have been recruited to write the chapters. Their research interests and experience cover the scope of the book. In addition, some experienced experts in IAQ field have been invited as advisors or reviewers to give their comments, suggestions and revisions on the handbook framework and the chapter details. Their contribution guarantees the quality of the book. We are very grateful to them. Last but not least, we express our heartfelt thanks to Prof. Spengler, Harvard University, for writing the foreword of the current Handbook of Indoor Air Quality both as a pioneer scientist who contributed greatly to indoor air science and as an Editor-in-chief of Handbook of Indoor Air Quality 2001, 1st ed. New York: McGraw-Hill. In addition to hard copies, the book is also published online and will be updated by the authors as needed to keep it aligned with current knowledge. These salient features can make the handbook fresh with the research development.
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.
This volume discusses the effects of indoor air environment and pollution in modern buildings on human health. Highlighting epidemiological studies and the determining factors, it offers proposals for improving indoor air quality (IAQ) in different environments. Focusing not only on homes and offices, but also vehicles and aircrafts, it details practical methods of measuring and assessing indoor air quality. Written by pioneering researchers, Indoor Environmental Quality and Health Risk toward Healthier Environment for All is a valuable resource for both new and established researchers as well as students seeking a comprehensive overview of the facts on indoor air quality and health. Also is also of interest to hygiene experts in industry, occupational health and safety professionals, governmental public health sectors and school physicians.
Written by experts, Indoor Air Quality Engineering offers practical strategies to construct, test, modify, and renovate industrial structures and processes to minimize and inhibit contaminant formation, distribution, and accumulation. The authors analyze the chemical and physical phenomena affecting contaminant generation to optimize system function and design, improve human health and safety, and reduce odors, fumes, particles, gases, and toxins within a variety of interior environments. The book includes applications in Microsoft Excel®, Mathcad®, and Fluent® for analysis of contaminant concentration in various flow fields and air pollution control devices.
Built on existing WHO indoor air quality guidelines for specific pollutants, these guidelines bring together the most recent evidence on fuel use, emission and exposure levels, health risks, intervention impacts and policy considerations, to provide practical recommendations to reduce this health burden.
Indoor Air Quality Engineering covers a wide range of indoor air quality engineering principles and applications, providing guidelines for identifying and analyzing indoor air quality problems as well as designing a system to mitigate these problems. Structured into three sections - properties and behavior of airborne pollutants, measurement and sampling efficiency, and air quality enhancement technologies - this book uses real-life examples, design problems, and solutions to illustrate engineering principles. Professionals and students in engineering, environmental sciences, public health, and industrial hygiene concerned with indoor air quality control will find Indoor Air Quality Engineering provides effective methods, technologies, and principles not traditionally covered in other texts.
The main objective of these updated global guidelines is to offer health-based air quality guideline levels, expressed as long-term or short-term concentrations for six key air pollutants: PM2.5, PM10, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In addition, the guidelines provide interim targets to guide reduction efforts of these pollutants, as well as good practice statements for the management of certain types of PM (i.e., black carbon/elemental carbon, ultrafine particles, particles originating from sand and duststorms). These guidelines are not legally binding standards; however, they provide WHO Member States with an evidence-informed tool, which they can use to inform legislation and policy. Ultimately, the goal of these guidelines is to help reduce levels of air pollutants in order to decrease the enormous health burden resulting from the exposure to air pollution worldwide.