Download Free Quality Control For Scintillation Cameras Book in PDF and EPUB Free Download. You can read online Quality Control For Scintillation Cameras and write the review.

Accurate interpretation of nuclear medicine image data depends upon an understanding of image patterns and quantitative results. This book presents numerous examples which allow the reader to gain an understanding of the interpretation of quality control tests and to recognize artefacts. The examples are not limited to the quality control tests, but include clinical images obtained from unsuspected malfunctioning in the scintillation camera and/or computer system, suboptimal use of the system or operator error.
Quality assurance (QA) is a crucial part of all aspects of nuclear medicine practice. The objective of this publication is to provide professionals in nuclear medicine centers with detailed quality control test procedures for the scintillation camera and computer system. Three types of quality tests are described in detail: acceptance, reference and routine tests for the scintillation camera, both in single and multiple head configurations, for obtaining images and quantitative data in planar imaging mode; whole body imaging mode; and single-photon emission computed tomography (SPECT). The publication is primarily intended to be of use to medical physicists, technologists, and other healthcare professionals who are responsible for ensuring optimal performance of imaging instruments, particularly SPECT systems. It may also be useful to managers, clinicians, and other decision-makers who are responsible for implementing quality assurance and quality control programs in nuclear medicine c
SPECT/CT Atlas of Quality Control and Image Artefacts
"Written at the technologist level, Nuclear Medicine Instrumentation, Second Edition focuses on instruments essential to the practice of nuclear medicine. Covering everything from Geiger counters to positron emission tomography systems, this text provides students with an understanding of the practical aspects of these instruments and their uses in nuclear medicine. Nuclear Medicine Instrumentation is made up of four parts: Small Instruments Gamma Camera Single Photon Emission Computed Tomography (SPECT) Positron Emission Tomography (PET) By concentrating on the operation of these instruments and the potential pitfalls that they are subject to, students will be better prepared for what they may encounter during their career. The Second Edition includes revised content and updated data throughout as well as a new chapter on Magnetic Resonance Imaging and Its Application to Nuclear Medicine and a new Appendix on Laboratory Accreditation"--
Scintillation Dosimetry delivers a comprehensive introduction to plastic scintillation dosimetry, covering everything from basic radiation dosimetry concepts to plastic scintillating fiber optics. Comprised of chapters authored by leading experts in the medical physics community, the book: Discusses a broad range of technical implementations, from point source dosimetry scaling to 3D-volumetric and 4D-scintillation dosimetry Addresses a wide scope of clinical applications, from machine quality assurance to small-field and in vivo dosimetry Examines related optical techniques, such as optically stimulated luminescence (OSL) or Čerenkov luminescence Thus, Scintillation Dosimetry provides an authoritative reference for detailed, state-of-the-art information on plastic scintillation dosimetry and its use in the field of radiation dosimetry.
Part of the renowned The Basics series, Nuclear Medicine Physics helps build foundational knowledge of how and why things happen in the clinical environment. Ideal for board review and reference, the 8th edition provides a practical summary of this complex field, focusing on essential details as well as real-life examples taken from nuclear medicine practice. New full-color illustrations, concise text, essential mathematical equations, key points, review questions, and useful appendices help you quickly master challenging concepts in nuclear medicine physics.
Building on the traditional concept of nuclear medicine, this textbook presents cutting-edge concepts of hybrid imaging and discusses the close interactions between nuclear medicine and other clinical specialties, in order to achieve the best possible outcomes for patients. Today the diagnostic applications of nuclear medicine are no longer stand-alone procedures, separate from other diagnostic imaging modalities. This is especially true for hybrid imaging guided interventional radiology or surgical procedures. Accordingly, today’s nuclear medicine specialists are actually specialists in multimodality imaging (in addition to their expertise in the diagnostic and therapeutic uses of radionuclides). This new role requires a new core curriculum for training nuclear medicine specialists. This textbook is designed to meet these new educational needs, and to prepare nuclear physicians and technologists for careers in this exciting specialty.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.