Download Free Quality Assurance For Spect Systems Book in PDF and EPUB Free Download. You can read online Quality Assurance For Spect Systems and write the review.

Quality assurance (QA) is a crucial part of all aspects of nuclear medicine practice. The objective of this publication is to provide professionals in nuclear medicine centers with detailed quality control test procedures for the scintillation camera and computer system. Three types of quality tests are described in detail: acceptance, reference and routine tests for the scintillation camera, both in single and multiple head configurations, for obtaining images and quantitative data in planar imaging mode; whole body imaging mode; and single-photon emission computed tomography (SPECT). The publication is primarily intended to be of use to medical physicists, technologists, and other healthcare professionals who are responsible for ensuring optimal performance of imaging instruments, particularly SPECT systems. It may also be useful to managers, clinicians, and other decision-makers who are responsible for implementing quality assurance and quality control programs in nuclear medicine c
SPECT/CT Atlas of Quality Control and Image Artefacts
Accurate interpretation of nuclear medicine image data depends upon an understanding of image patterns and quantitative results. This book presents numerous examples which allow the reader to gain an understanding of the interpretation of quality control tests and to recognize artefacts. The examples are not limited to the quality control tests, but include clinical images obtained from unsuspected malfunctioning in the scintillation camera and/or computer system, suboptimal use of the system or operator error.
This publication provides guidelines for the implementation of quality assurance and control programs concerning the combined medical diagnostic modality of positron emission tomography (PET) and computed tomography (CT). These independent, but complementary, imaging techniques are in frequent and increasing use within the fields of diagnostic imaging, oncology, cardiology and neurology, where they allow physicians to locate and diagnose malignant diseases accurately. This publication establishes guidelines for acceptance testing and routine quality control as necessary for optimal clinical performance. Specific topics of discussion include frameworks for reference values, tolerances and action levels, minimal required configurations with corresponding performances characteristics, and the management of ancillary equipment.
This book provides comprehensive and detailed information on the scientific bases of nuclear medicine, addressing a wide variety of topics and explaining the concepts that underlie many of the investigations and procedures performed in the field. The book is divided into six sections that cover the physics and chemistry of nuclear medicine besides associated quality assurance/quality control procedures; dosimetry and radiation biology; SPECT and PET imaging instrumentation plus CT imaging technology in hybrid modalities; data analysis including image processing, reconstruction, radiomics, image degrading correction techniques, along with image quantitation and kinetic modeling. Within these sections, particular attention is paid to recent developments and the advances in knowledge that have taken place since release of the first edition in 2011. Several entirely new chapters have been included and the remaining chapters, thoroughly updated. Innovations in the ever-expanding field of nuclear medicine are predominantly due to integration of the basic sciences with complex technological advances. This excellently illustrated book on the subject will be of interest to not only nuclear medicine physicists and physicians but also clinical scientists, radiologists, radiopharmacists, medical students and technologists.
This comprehensive textbook provides a state of the art overview of the means by which quality in patient care is ensured within the field of nuclear medicine. Acknowledged experts in the field cover both management aspects, such as laws, standards, guidelines, patient safety, management instruments, and organisations, and specific issues, including radiation safety and equipment. Quality in Nuclear Medicine not only presents detailed information on the topics discussed but should also stimulate further discussion and offer an important tool to all professionals in the field of nuclear medicine and their stakeholders. Readers will find that the book provides a wealth of excellent guidance and reflects the pioneering role of nuclear medicine in advancing different aspects of quality within medicine.
This publication presents a harmonized approach to quality assurance in the field of computed tomography applied to both diagnostics and therapy. It gives a careful analysis of the principles and specific instructions that can be used for a quality assurance programme for optimal performance and reduced patient dose in diagnostic radiology. In some cases, radiotherapy programmes are making a transition from 2-D to 3-D radiotherapy, a complex process which critically depends on accurate treatment planning. In this respect, the authors also provide detailed information about the elements needed for quality assurance testing, including those relating to accurate patient characterization as needed for radiotherapy treatment planning.
Radioisotope-based molecular imaging probes provide unprecedented insight into biochemistry and function involved in both normal and disease states of living systems, with unbiased in vivo measurement of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology including functional magnetic resonance imaging (fMRI) can provide such high sensitivity and specificity at a tracer level. The applications of this technology can be very broad ranging from drug development, pharmacokinetics, clinical investigations, and finally to routine diagnostics in radiology. The design and the development of radiopharmaceuticals for molecular imaging studies using PET/MicroPET or SPECT/MicroSPECT are a unique challenge. This book is intended for a broad audience and written with the main purpose of educating the reader on various aspects including potential clinical utility, limitations of drug development, and regulatory compliance and approvals.
Quality management systems are essential and should be maintained with the intent to continuously improve effectiveness and efficiency, enabling nuclear medicine to achieve the expectations of its quality policy, satisfy its customers and improve professionalism. The quality management (QM) audit methodology in nuclear medicine practice, introduced in this publication, is designed to be applied to a variety of economic circumstances. A key outcome is a culture of reviewing all processes of the clinical service for continuous improvement in nuclear medicine practice. Regular quality audits and assessments are vital for modern nuclear medicine services. More importantly, the entire QM and audit process has to be systematic, patient oriented and outcome based. The management of services should also take into account the diversity of nuclear medicine services around the world and multidisciplinary contributions. The latter include clinical, technical, radiopharmaceutical, medical physics and radiation safety procedures.