Download Free Qualitative Dynamics And Chaos Book in PDF and EPUB Free Download. You can read online Qualitative Dynamics And Chaos and write the review.

This largely self-contained textbook on qualitative dynamics and chaos is intended for a broad audience of readers who are interested in describing systems that change over time using a mathematically simple, but conceptually rigorous, framework centered around descriptive sequences of symbols. This framework also allows readers who may not have a large amount of mathematical training to develop an unambiguous understanding of the notion of chaos and related aspects of dynamical systems theory. Concepts and techniques are introduced in the first parts of the book, which are later expanded to more mathematically abstract ideas in the latter parts of the book. For those who are already have some mathematical training, this text is intended to be an alternative to standard symbolic dynamics textbooks which both mildly generalizes their scope and specifically centers its discussion around dynamical systems theory aspects. It uses the notion of a "falsifiable system"—a type of set of infinite symbol sequences, which is an extension of both formal languages and symbolic dynamical systems—as a central conceptual link between the theory of formal languages and the study of chaos, and allows readers a method to identify chaos within such systems (and systems equivalent to them) by entirely graphical methods. The latter parts of the book then focus on how to apply these methods to understand the dynamics of more traditional, numerically-based systems.
Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.
Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need. Following the footsteps of Poincar(r), and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in the book have been developed only recently and have not yet appeared in textbook form. In keeping with the self-contained nature of the book, all the topics are developed with introductory background and complete mathematical rigor. Generously illustrated and written at a high level of exposition, this invaluable book will appeal to both the beginner and the advanced student of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject. Sample Chapter(s). Introduction to Part II (124 KB). Chapter 7.1: Rough systems on a plane. Andronov-Pontryagin theorem (218 KB). Chapter 7.2: The set of center motions (158 KB). Chapter 7.3: General classification of center motions (155 KB). Chapter 7.4: Remarks on roughness of high-order dynamical systems (136 KB). Chapter 7.5: Morse-Smale systems (435 KB). Chapter 7.6: Some properties of Morse-Smale systems (211 KB). Contents: Structurally Stable Systems; Bifurcations of Dynamical Systems; The Behavior of Dynamical Systems on Stability Boundaries of Equilibrium States; The Behavior of Dynamical Systems on Stability Boundaries of Periodic Trajectories; Local Bifurcations on the Route Over Stability Boundaries; Global Bifurcations at the Disappearance of a Saddle-Node Equilibrium States and Periodic Orbits; Bifurcations of Homoclinic Loops of Saddle Equilibrium States; Safe and Dangerous Boundaries. Readership: Engineers, students, mathematicians and researchers in nonlinear dynamics and dynamical systems.
Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need.Following the footsteps of Poincaré, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form.In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced students of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
This book develops analytical methods for studying the dynamical chaos, synchronization, and dynamics of structures in various models of coupled rotators. Rotators and their systems are defined in a cylindrical phase space, and, unlike oscillators, which are defined in Rn, they have a wider “range” of motion: There are vibrational and rotational types for cyclic variables, as well as their combinations (rotational-vibrational) if the number of cyclic variables is more than one. The specificity of rotator phase space poses serious challenges in terms of selecting methods for studying the dynamics of related systems. The book chiefly focuses on developing a modified form of the method of averaging, which can be used to study the dynamics of rotators. In general, the book uses the “language” of the qualitative theory of differential equations, point mappings, and the theory of bifurcations, which helps authors to obtain new results on dynamical chaos in systems with few degrees of freedom. In addition, a special section is devoted to the study and classification of dynamic structures that can occur in systems with a large number of interconnected objects, i.e. in lattices of rotators and/or oscillators. Given its scope and format, the book can be used both in lectures and courses on nonlinear dynamics, and in specialized courses on the development and operation of relevant systems that can be represented by a large number of various practical systems: interconnected grids of various mechanical systems, various types of networks including not only mechanical but also biological systems, etc.
This book deals with the global qualitative behavior of flows and diffeomorphisms. It presents a systematic study of the fundamental theory and method of dynamical systems, from local behavior near a critical (fixed) point or periodic orbit to the global, such as global structural stability, bifurcations and chaos. It emphasizes the global non-hyperbolicity and introduces some new results obtained by Chinese mathematicians which may not be widely known.
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.
FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.