Download Free Qualitative Comparison Of Graph Based And Logic Based Multi Relational Data Mining A Case Study Book in PDF and EPUB Free Download. You can read online Qualitative Comparison Of Graph Based And Logic Based Multi Relational Data Mining A Case Study and write the review.

This text takes a focused and comprehensive look at mining data represented as a graph, with the latest findings and applications in both theory and practice provided. Even if you have minimal background in analyzing graph data, with this book you’ll be able to represent data as graphs, extract patterns and concepts from the data, and apply the methodologies presented in the text to real datasets. There is a misprint with the link to the accompanying Web page for this book. For those readers who would like to experiment with the techniques found in this book or test their own ideas on graph data, the Web page for the book should be http://www.eecs.wsu.edu/MGD.
This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists. It covers a variety of subjects in the frontiers of intelligent systems and computer engineering and their industrial applications. The book offers up-to-date information on advances in intelligent systems and computer engineering and also serves as an excellent reference work for researchers and graduate students working in the field.
With the increased possibilities in modern society for companies and institutions to gather data cheaply and efficiently, the subject of Data Mining has become of increasing importance. This interest has inspired a rapidly maturing research field with developments both on a theoretical, as well as on a practical level with the availability of a range of commercial tools. Unfortunately, the widespread application of this technology has been limited by an important assumption in mainstream Data Mining approaches. This assumption – all data resides, or can be made to reside, in a single table – prevents the use of these Data Mining tools in certain important domains, or requires considerable massaging and altering of the data as a pre-processing step. This limitation has spawned a relatively recent interest in richer Data Mining paradigms that do allow structured data as opposed to the traditional flat representation. This publication goes into the different uses of Data Mining, with Multi-Relational Data Mining (MRDM), the approach to Structured Data Mining, as the main subject of this book.
This book constitutes the proceedings of the 17th International Conference on Discovery Science, DS 2015, held in banff, AB, Canada in October 2015. The 16 long and 12 short papers presendted together with 4 invited talks in this volume were carefully reviewed and selected from 44 submissions. The combination of recent advances in the development and analysis of methods for discovering scienti c knowledge, coming from machine learning, data mining, and intelligent data analysis, as well as their application in various scienti c domains, on the one hand, with the algorithmic advances in machine learning theory, on the other hand, makes every instance of this joint event unique and attractive.
The rapidly growing volume of available digital documents of various formats and the possibility to access these through Internet-based technologies, have led to the necessity to develop solid methods to properly organize and structure documents in large digital libraries and repositories. Due to the extremely large volumes of documents and to their unstructured form, most of the research efforts in this direction are dedicated to automatically infer structure and schemas that can help to better organize huge collections of documents and data. This book covers the latest advances in structure inference in heterogeneous collections of documents and data. The book brings a comprehensive view of the state-of-the-art in the area, presents some lessons learned and identifies new research issues, challenges and opportunities for further research agenda and developments. The selected chapters cover a broad range of research issues, from theoretical approaches to case studies and best practices in the field. Researcher, software developers, practitioners and students interested in the field of learning structure and schemas from documents will find the comprehensive coverage of this book useful for their research, academic, development and practice activity.
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
`In plain language but with very thorough detail, this book guides the researcher who really wants to use the NVivo software (and use it now) into their project. The way is lit with real-project examples, adorned with tricks and tips, but it’s a clear path to a project' - Lyn Richards, Founder and Non-Executive Director, QSR International Doing Qualitative Data Analysis with NVivo is essential reading for anyone thinking of using their computer to help analyze qualitative data. With 15 years experience in computer-assisted analysis of qualitative and mixed-mode data, Patricia Bazeley is one of the leaders in the use and teaching of NVivo software. Through this very practical book, readers are guided on how best to make use of the powerful and flexible tools offered by the latest version of NVivo as they work through each stage of their research projects. Explanations draw on examples from her own and others' projects, and are supported by the methodological literature. Researchers have different requirements and come to their data from different perspectives. This book shows how NVivo software can accommodate and assist analysis across those different perspectives and methodological approaches. It is required reading for both students and experienced researchers alike.
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions
Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.