Download Free Qos And Energy Management In Cognitive Radio Network Book in PDF and EPUB Free Download. You can read online Qos And Energy Management In Cognitive Radio Network and write the review.

This book covers the important aspects involved in making cognitive radio devices portable, mobile and green, while also extending their service life. At the same time, it presents a variety of established theories and practices concerning cognitive radio from academia and industry. Cognitive radio can be utilized as a backbone communication medium for wireless devices. To effectively achieve its commercial application, various aspects of quality of service and energy management need to be addressed. The topics covered in the book include energy management and quality of service provisioning at Layer 2 of the protocol stack from the perspectives of medium access control, spectrum selection, and self-coexistence for cognitive radio networks.
A cognitive network makes use of the information gathered from the network in order to sense the environment, plan actions according to the input, and make appropriate decisions using a reasoning engine. The ability of cognitive networks to learn from the past and use that knowledge to improve future decisions makes them a key area of interest for anyone whose work involves wireless networks and communications. Cognitive Networks: Applications and Deployments examines recent developments in cognitive networks from the perspective of cutting-edge applications and deployments. Presenting the contributions of internationally renowned experts, it supplies complete and balanced treatment of the fundamentals of both cognitive radio communications and cognitive networks—together with implementation details. The book includes case studies and detailed descriptions of cognitive radio platforms and testbeds that demonstrate how to build real-world cognitive radio systems and network architectures. It begins with an introduction to efficient spectrum management and presents a survey on joint routing and dynamic spectrum access in cognitive radio networks. Next, it examines radio spectrum sensing and network coding and design. It explores intelligent routing in graded cognitive networks and presents an energy-efficient routing protocol for cognitive radio ad hoc networks. The book concludes by considering dynamic radio spectrum access and examining vehicular cognitive networks and applications. Presenting the latest standards and spectrum policy developments, the book’s strong practical orientation provides you with the understanding you will need to participate in the development of compliant cognitive systems.
Cognitive radio has become a revolutionary technology that enables the functionalities of dynamic spectrum access. These are the radios that can be programmed and configured dynamically and aims at enhancing the efficiency of spectrum usage by allowing unlicensed users to access/share the licensed spectrum. Cognitive radio networks, a network of cognitive radios, are smart networks that automatically sense the channel and adjust the network parameters accordingly. Therefore, cognitive radio networks raise many challenges such as power management, spectrum management, route management, environment awareness, path robustness, and security issues. As Cognitive Radio (CR) enables dynamic spectrum access which causes adverse effects on network performance because routing protocols that exists were designed considering fixed frequency band. Also, effective routing in CRNs needs local and continual knowledge of its environment. If licensed user (primary user) requests for its channel which is currently used by unlicensed user (secondary user) then unlicensed user has to return the channel to licensed user. However, unlicensed user has to search for another channel and accordingly it needs to seek for route discovery. So, all these important factors need to be accounted for while performing route management. In this thesis, QoS based route management technique is proposed. Proposed model makes use of functionalities of profile exchange mechanism and location services. The proposed QoS routing algorithm contains following elements: (a) each licensed user prepares channel property table which lists all the properties of the channel, whereas all the unlicensed users in the network due to cognitive functionality sense the environment and prepare a table which contains identification information of neighbor node and channel present between them. All unlicensed users share their table with central entity. (b) Central entity with the help of received information and location services prepares routing table for all the nodes in the network. (c) Various Quality of Service (QoS) metrics are considered to improve the performance of the network. The metrics include power transmission, probability of channel availability, probability of PU presence, and Expected Transmission Count. Central entity provides a route to destination based on the QoS level requested by unlicensed users. Proposed model provides a route with minimum end-to-end transmission power, high probability of channel availability, low probability of PU presence and low value of expected transmission count, to increase life span of users in the network, to decrease the delay, to stabilize wireless connectivity and to increase the throughput of the communication, respectively, based on the QoS level requested by a secondary user. Performance of the network is examined by simulating the network in NS2 under simulation environment with the help of end to end delay, throughput, packet delivery ratio, and % packet loss. Proposed model performs better than two other reference models mentioned in the thesis and is shown in the simulation results.
"This book examines how wireless sensor nodes with cognitive radio capabilities can address these network challenges and improve the spectrum utilization, presenting a broader picture on the applications, architecture, challenges, and open research directions in the area of WSN research"--Provided by publisher.
Self-Organization and Green Applications in Cognitive Radio Networks provides recent research on the developments of efficient cognitive network topology. The most current procedures and results are presented to demonstrate how developments in this area can reduce complications, confusion, and even costs. The book also identifies future challenges that are predicted to arrive in the Cognitive Radio Network along with potential solutions. This innovative publication is unique because it suggests green, energy efficient and cost efficient resolutions to the inevitable challenges in the network.
The limitation of the radio spectrum and the rapid growth of communication applications make optimal usage of radio resources essential. Cognitive radio (CR) is an attractive research area for 4G/5G wireless communication systems, which enables unlicensed users to access the spectrum. Delivering higher spectral efficiency, supporting the higher number of users, and achieving higher coverage and throughput are the main advantages of CR-based networks compared to conventional ones. The main goal of this book is to provide highlights of current research topics in the field of CR-based systems. The book consists of six chapters in three sections focusing on primary and secondary users, spectrum sensing, spectrum sharing, CR-based IoT, emulation attack, and interference alignment.
This book offers an accessible introduction and practical guide to Voice over Internet Protocol (VoIP) technology, providing readers with the know-how to solve the problems encountered in applying VoIP technology across all types of network. It incorporates the latest research findings and brings readers up to date with the challenges that are faced by researchers developing novel applications of VoIP. The authors discuss the general architecture of VoIP technology, along with its application and relevance in conventional and emerging wireless communication networks, including Wireless Local Area Networks (WLANs), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) and Cognitive Radio Networks. The book also includes Quality of service (QoS) studies under dynamic and unpredictable network conditions, which examine the reliability of both legacy systems And the upcoming pervasive computing systems. Further, it explains how the heuristic-based learning algorithms that are used in VoIP communications may help develop today’s technology in the area of autonomous systems. This book is a valuable source of information for academics and researchers, as it provides state-of-theart research in VoIP technology. It is also of interest to network designers, application architects, and service providers looking for a coherent understanding of VoIP across a wide range of devices, network applications and user categories.
An all-inclusive introduction to this revolutionary technology, presenting the key research issues and state-of-the-art design, analysis, and optimization techniques.
This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-offs for operating strategies. Promising research directions on dynamic resource management for CR and the applications in other wireless communication systems are also discussed. Cognitive Radio Networks: Dynamic Resource Allocation Schemes targets computer scientists and engineers working in wireless communications. Advanced-level students in computer science and electrical engineering will also find this brief useful reading about the next generation of wireless communication.