Download Free Qa Qc Of Subgrade And Embankment Construction Book in PDF and EPUB Free Download. You can read online Qa Qc Of Subgrade And Embankment Construction and write the review.

The Dynamic Cone Penetrometer (DCP) is a device that is used for the estimation of in situ compaction quality of constructed subgrades and embankments. It is a relatively inexpensive, light-weight and easy to use device that measures the dynamic penetration resistance of the compacted soil, from which an estimate of soil strength and stiffness characteristics can be made. Owing to its ease of use, many DOTs in the U.S. have employed the DCP in their compaction quality control procedures, and over the past few decades, extensive research has been carried out on the development of correlations between the results of the DCP test and the results of strength and stiffness tests performed on compacted soils (e.g., California bearing ratio, and resilient modulus)The objectives of this research are to refine DCP-based quality assurance and quality control correlations for compaction quality control developed by previous research studies carried out at Purdue for the Indiana Department of Transportation, especially focusing on (1) grouping of the soils based on their mechanical response to the DCP loading, and (2) limiting the in situ moisture range of the soils used for development of correlations within -2% of the optimum moisture content of the tested soil. The factors outlined above are studied, and in particular, soil grouping is examined critically. The AASHTO ('A-based') classification employed previously for classification of soils is replaced with a new classification criteria specifically developed for the DCP test. Soils are grouped into one of the two categories of coarse-grained or fine-grained soils on the basis of the size of the dominant particle in the soil. The criteria developed for the classification of soil into one of these two categories is based on index properties of the soil, such as the standard Proctor maximum dry density, optimum moisture content, plasticity index (PI) and fines content.
16. AbstractProof rolling provides a method to examine the entire subgrade surface as a compliment to standard random acceptance testing. Proof rolling requires established criteria that account for the interplay of equipment parameters and soil characteristics, technique, and other specifics of the project to allow for proper interpretation. The researchers concluded that proof rolling is not appropriate for determining soil elastic properties, while it can reveal in situ strength properties. No information from state highway agencies (SHA) publications or interviews reports using proof rolling other than for the evaluation of the subgrade. Only eight SHA¿s have notable specifications or other supporting documents containing significant guidance or criteria. The requirements provided for use of either of two equipment types¿tandem-axle rear dump trucks and chariot-style rollers¿and a range of evaluation criteria based on soil type and whether the project is new construction or re-construction. Recommendations provided fall within parameters practiced by states that have the most well-developed specifications and practices for proof rolling. The recommendations include: evaluation is of the subgrade only and the equipment shall be either a tandem-axle rear dump truck or a tri-axle rear dump truck (with raised third axle) loaded to a minimum gross weight of 20 tons. The chariot-style roller loaded to a minimum gross weight of 40 tons could be alternatively specified. The test shall be a single pass in each traffic lane with the passing criteria of a 1¿ deflection for new construction and 1⁄2¿ deflection for re-constructed or stabilized subgrade, as well as the absence of pumping and cracking.
This report from the second Strategic Highway Research Program (SHRP 2), which is administered by the Transportation Research Board of the National Academies, describes suggested performance specifications for different application areas and delivery methods that users may tailor to address rapid highway renewal project-specific goals and conditions.
"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 445: Practices for Unbound Aggregate Pavement Layers consolidates information on the state-of-the-art and state-of-the-practice of designing and constructing unbound aggregate pavement layers. The report summarizes effective practices related to material selection, design, and construction of unbound aggregate layers to potentially improve pavement performance and longevity."--Publisher website.
Gain a stronger foundation with optimal ground improvement Before you break ground on a new structure, you need to analyze the structure of the ground. Expert analysis and optimization of the geo-materials on your site can mean the difference between a lasting structure and a school in a sinkhole. Sometimes problematic geology is expected because of the location, but other times it's only unearthed once construction has begun. You need to be able to quickly adapt your project plan to include an improvement to unfavorable ground before the project can safely continue. Principles and Practice of Ground Improvement is the only comprehensive, up-to-date compendium of solutions to this critical aspect of civil engineering. Dr. Jie Han, registered Professional Engineer and preeminent voice in geotechnical engineering, is the ultimate guide to the methods and best practices of ground improvement. Han walks you through various ground improvement solutions and provides theoretical and practical advice for determining which technique fits each situation. Follow examples to find solutions to complex problems Complete homework problems to tackle issues that present themselves in the field Study design procedures for each technique to simplify field implementation Brush up on modern ground improvement technologies to keep abreast of all available options Principles and Practice of Ground Improvement can be used as a textbook, and includes Powerpoint slides for instructors. It's also a handy field reference for contractors and installers who actually implement plans. There are many ground improvement solutions out there, but there is no single right answer to every situation. Principles and Practice of Ground Improvement will give you the information you need to analyze the problem, then design and implement the best possible solution.