Download Free Pythagorean Triangles Book in PDF and EPUB Free Download. You can read online Pythagorean Triangles and write the review.

The study of the arithmetical properties of triangles dates back to ancient Greece, and possibly beyond. This classic text, written by a distinguished mathematician and teacher, focuses on a fundamental cornerstone of elementary geometry, the theorem of Pythagoras, and its applications. Unabridged republication of the edition published by the Graduate School of Science, Yeshiva University, New York, 1962. Translated by Dr. Ambikeshwar Sharma.
This classic text, written by a distinguished mathematician and teacher, focuses on a fundamental theory of geometry. Topics include all types of Pythagorean triangles.
Frontmatter --Contents --List of Color Plates --Preface --Prologue: Cambridge, England, 1993 --1. Mesopotamia, 1800 BCE --Sidebar 1: Did the Egyptians Know It? --2. Pythagoras --3. Euclid's Elements --Sidebar 2: The Pythagorean Theorem in Art, Poetry, and Prose --4. Archimedes --5. Translators and Commentators, 500-1500 CE --6. François Viète Makes History --7. From the Infinite to the Infinitesimal --Sidebar 3: A Remarkable Formula by Euler --8. 371 Proofs, and Then Some --Sidebar 4: The Folding Bag --Sidebar 5: Einstein Meets Pythagoras --Sidebar 6: A Most Unusual Proof --9. A Theme and Variations --Sidebar 7: A Pythagorean Curiosity --Sidebar 8: A Case of Overuse --10. Strange Coordinates --11. Notation, Notation, Notation --12. From Flat Space to Curved Spacetime --Sidebar 9: A Case of Misuse --13. Prelude to Relativity --14. From Bern to Berlin, 1905-1915 --Sidebar 10: Four Pythagorean Brainteasers --15. But Is It Universal? --16. Afterthoughts --Epilogue: Samos, 2005 --Appendixes --Chronology --Bibliography --Illustrations Credits --Index.
Right triangles are at the heart of this textbook’s vibrant new approach to elementary number theory. Inspired by the familiar Pythagorean theorem, the author invites the reader to ask natural arithmetic questions about right triangles, then proceeds to develop the theory needed to respond. Throughout, students are encouraged to engage with the material by posing questions, working through exercises, using technology, and learning about the broader context in which ideas developed. Progressing from the fundamentals of number theory through to Gauss sums and quadratic reciprocity, the first part of this text presents an innovative first course in elementary number theory. The advanced topics that follow, such as counting lattice points and the four squares theorem, offer a variety of options for extension, or a higher-level course; the breadth and modularity of the later material is ideal for creating a senior capstone course. Numerous exercises are included throughout, many of which are designed for SageMath. By involving students in the active process of inquiry and investigation, this textbook imbues the foundations of number theory with insights into the lively mathematical process that continues to advance the field today. Experience writing proofs is the only formal prerequisite for the book, while a background in basic real analysis will enrich the reader’s appreciation of the final chapters.
Bringing together geometry and philosophy, this book undertakes a strikingly original study of the origins and significance of the Pythagorean theorem. Thales, whom Aristotle called the first philosopher and who was an older contemporary of Pythagoras, posited the principle of a unity from which all things come, and back into which they return upon dissolution. He held that all appearances are only alterations of this basic unity and there can be no change in the cosmos. Such an account requires some fundamental geometric figure out of which appearances are structured. Robert Hahn argues that Thales came to the conclusion that it was the right triangle: by recombination and repackaging, all alterations can be explained from that figure. This idea is central to what the discovery of the Pythagorean theorem could have meant to Thales and Pythagoras in the sixth century BCE. With more than two hundred illustrations and figures, Hahn provides a series of geometric proofs for this lost narrative, tracing it from Thales to Pythagoras and the Pythagoreans who followed, and then finally to Plato's Timaeus. Uncovering the philosophical motivation behind the discovery of the theorem, Hahn's book will enrich the study of ancient philosophy and mathematics alike.
The Pythagorean theorem may be the best-known equation in mathematics. Its origins reach back to the beginnings of civilization, and today every student continues to study it. What most nonmathematicians don''t understand or appreciate is why this simply stated theorem has fascinated countless generations. In this entertaining and informative book, a veteran math educator makes the importance of the Pythagorean theorem delightfully clear.He begins with a brief history of Pythagoras and the early use of his theorem by the ancient Egyptians, Babylonians, Indians, and Chinese, who used it intuitively long before Pythagoras''s name was attached to it. He then shows the many ingenious ways in which the theorem has been proved visually using highly imaginative diagrams. Some of these go back to ancient mathematicians; others are comparatively recent proofs, including one by the twentieth president of the United States, James A. Garfield. After demonstrating some curious applications of the theorem, the author then explores the Pythagorean triples, pointing out the many hidden surprises of the three numbers that can represent the sides of the right triangle (e.g, 3, 4, 5 and 5, 12, 13). And many will truly amaze the reader. He then turns to the "Pythagorean means" (the arithmetic, geometric, and harmonic means). By comparing their magnitudes in a variety of ways, he gives the reader a true appreciation for these mathematical concepts. The final two chapters view the Pythagorean theorem from an artistic point of view - namely, how Pythagoras''s work manifests itself in music and how the Pythagorean theorem can influence fractals. The author''s lucid presentation and gift for conveying the significance of this key equation to those with little math background will inform, entertain, and inspire the reader, once again demonstrating the power and beauty of mathematics!
This second edition updates the well-regarded 2001 publication with new short sections on topics like Catalan numbers and their relationship to Pascal's triangle and Mersenne numbers, Pollard rho factorization method, Hoggatt-Hensell identity. Koshy has added a new chapter on continued fractions. The unique features of the first edition like news of recent discoveries, biographical sketches of mathematicians, and applications--like the use of congruence in scheduling of a round-robin tournament--are being refreshed with current information. More challenging exercises are included both in the textbook and in the instructor's manual. Elementary Number Theory with Applications 2e is ideally suited for undergraduate students and is especially appropriate for prospective and in-service math teachers at the high school and middle school levels. * Loaded with pedagogical features including fully worked examples, graded exercises, chapter summaries, and computer exercises * Covers crucial applications of theory like computer security, ISBNs, ZIP codes, and UPC bar codes * Biographical sketches lay out the history of mathematics, emphasizing its roots in India and the Middle East
This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
A hilarious reeducation in mathematics-full of joy, jokes, and stick figures-that sheds light on the countless practical and wonderful ways that math structures and shapes our world. In Math With Bad Drawings, Ben Orlin reveals to us what math actually is; its myriad uses, its strange symbols, and the wild leaps of logic and faith that define the usually impenetrable work of the mathematician. Truth and knowledge come in multiple forms: colorful drawings, encouraging jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone. Orlin shows us how to think like a mathematician by teaching us a brand-new game of tic-tac-toe, how to understand an economic crises by rolling a pair of dice, and the mathematical headache that ensues when attempting to build a spherical Death Star. Every discussion in the book is illustrated with Orlin's trademark "bad drawings," which convey his message and insights with perfect pitch and clarity. With 24 chapters covering topics from the electoral college to human genetics to the reasons not to trust statistics, Math with Bad Drawings is a life-changing book for the math-estranged and math-enamored alike.