Download Free Pulsed Power Systems Analysis Book in PDF and EPUB Free Download. You can read online Pulsed Power Systems Analysis and write the review.

Pulsed-Power Systems describes the physical and technical foundations for the production and application of high-voltage pulses of very high-power and high-energy character. In the initial chapters, it addresses materials, components and the most common diagnostics. In the second part, three categories of applications with scientific and industrial relevance are detailed: production of strong pulsed electric and magnetic fields, intense radiation sources and pulsed electric (plasma) discharges.
Mesyats' Pulsed Power provides in-depth coverage of the generation of pulsed electric power, electron and ion beams, and various types of pulsed electromagnetic radiation. The electric power that can be produced by the methods described ranges from 106 to 1014W for pulse durations of 10-10-10-7s. The book consists of nine parts containing 28 chapters, which deal with various aspects of pulsed power and high-power electronics and cover a concise theory of electric circuits as applied to nanosecond pulse technology; physics of fast processes occurring in electrical discharges in vacuum, gases, and liquids; phenomena in long lines; mechanisms of operation and designs of high-power gas-discharge, plasma, and semiconductor closing and opening switches as well as of high-power electric pulse generators using these switches; solid-state (semiconductor and magnetic) methods of production and transformation of nanosecond high-power pulses; and methods of production of high-power pulsed electron and ion beams. The closing part describes methods applied to produce high-power nanosecond pulsed X-rays, laser beams, microwaves, and ultrawideband electromagnetic radiation. This all-embracing book covers gas, laser, semiconductor, and magnetic circuit elements, the phenomenon of explosive electron emission discovered by the author, diodes of various types, including semiconductor diodes based on the SOS effect discovered with participation of the author, and methods of production of various types of high-power pulsed radiation.
The United States Naval Research Lab has a pulsed power system known as MERCURY. A pulsed power system is a system in which a relatively large amount of power is dissipated over a short period of time, typically on the order of milliseconds or less. The result of this process is that, while the average power may be relatively low, the peak power can be substantially higher. The United States Naval Research Laboratory conducts experiments with MERCURY, a 2.2 TW pulsed power inductive voltage adding system. During usage of this system, it was observed that the coating on the inductive cells was damaged. To better understand the characteristics of this pulsed power system, the model was scaled down substantially and data was collected from thousands of trials to observe if similar component degradation occurred. Signal analysis techniques were applied such as cross-correlation and singular value decomposition to determine if these same degradation issues occurred on small-scale models.
This textbook introduces electrical engineering students to the most relevant concepts and techniques in three major areas today in power system engineering, namely analysis, security and deregulation. The book carefully integrates theory and practical applications. It emphasizes power flow analysis, details analysis problems in systems with fault conditions, and discusses transient stability problems as well. In addition, students can acquire software development skills in MATLAB and in the usage of state-of-the-art software tools such as Power World Simulator (PWS) and Siemens PSS/E. In any energy management/operations control centre, the knowledge of contingency analysis, state estimation and optimal power flow is of utmost importance. Part 2 of the book provides comprehensive coverage of these topics. The key issues in electricity deregulation and restructuring of power systems such as Transmission Pricing, Available Transfer Capability (ATC), and pricing methods in the context of Indian scenario are discussed in detail in Part 3 of the book. The book is interspersed with problems for a sound understanding of various aspects of power systems. The questions at the end of each chapter are provided to reinforce the knowledge of students as well as prepare them from the examination point of view. The book will be useful to both the undergraduate students of electrical engineering and postgraduate students of power engineering and power management in several courses such as Power System Analysis, Electricity Deregulation, Power System Security, Restructured Power Systems, as well as laboratory courses in Power System Simulation.
Examines the foundation of pulse power technology in detail to optimize the technology in modern engineering settings Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interference and noise suppression; and EM topology for interference control. In addition, the book: Acts as a reference for practicing engineers as well as a teaching text Features relevant design equations derived from the fundamental concepts in a single reference Contains lucid presentations of the mechanisms of electrical breakdown in gaseous, liquid, solid and vacuum dielectrics Provides extensive illustrations and references Foundations of Pulsed Power Technology will be an invaluable companion for professionals working in the fields of relativistic electron beams, intense bursts of light and heavy ions, flash X-ray systems, pulsed high magnetic fields, ultra-wide band electromagnetics, nuclear electromagnetic pulse simulation, high density fusion plasma, and high energy- rate metal forming techniques.
This title evaluates the performance, safety, efficiency, reliability and economics of a power delivery system. It emphasizes the use and interpretation of computational data to assess system operating limits, load level increases, equipment failure and mitigating procedures through computer-aided analysis to maximize cost-effectiveness.
As indicated in the Foreword to this series on Advances in Pulsed Power Technologies, the pioneering roots of modern pulsed power as related by J.C. "Charlie" Martin and his co-workers of the Atomic Weapons Research Establishment, Aldermaston, Reading UK is an important if not essential record of the experiential history of the major developer of pulsed power advances during the post-World War II period. It finds great utility as an instructive accounting of the trials, tribulations and, finally, an almost chronological walk through their thoughts as they diligently and happily travel the yellow brick road to success. It is recounted in the inimitable style of "Charlie" Martin as only he can relate, with some insightful perspectives by Mike Good man, a constant companion, and collaborator who shares his unique view of "Charlie" and the Aldermaston Group. This collection of selected articles is unique, for in large part, the documentation of their struggle and final triumph have not been formerly published in any archival manner. One reason, we suspect, was the defense-related application and significance of their work, compounded by the constant need for progress which did not allow for the time consuming preparation of formal submission to the literature. This also explains the "urgent" and sometimes terse manner of their writings. Yet the material remains remarkably current because we are dealing, in large measure, with pulsed systems less sensitive to those factors involved in slower pulsed scenarios.
The capability of effectively analyzing complex systems is fundamental to the operation, management and planning of power systems. This book offers broad coverage of essential power system concepts and features a complete and in-depth account of all the latest developments, including Power Flow Analysis in Market Environment; Power Flow Calculation of AC/DC Interconnected Systems and Power Flow Control and Calculation for Systems Having FACTS Devices and recent results in system stability.
While the basic operating principles of Helical Magnetic Flux Compression Generators are easy to understand, the details of their construction and performance limits have been described only in government reports, many of them classified. Conferences in the field of flux compression are also dominated by contributions from government (US and foreign) laboratories. And the government-sponsored research has usually been concerned with very large generators with explosive charges that require elaborate facilities and safety arrangements. This book emphasizes research into small generators (less than 500 grams of high explosives) and explains in detail the physical fundamentals, construction details, and parameter-variation effects related to them.