Download Free Pulsar Astronomy 2000 And Beyond Book in PDF and EPUB Free Download. You can read online Pulsar Astronomy 2000 And Beyond and write the review.

Annotation These papers, collected from the August 1999 conference, address issues such as emission properties, the evolution of pulsar populations, accurate timing observations, the nature of AXPs and Magnetars, the use of pulsars to study the interstellar medium, pulsars as probes of General Relativity, and the numerous theoretical interpretations of the pulsar phenomena. Contributors include astronomers and physicists from around the world. Annotation c. Book News, Inc., Portland, OR (booknews.com)
This 2004 book provides a concise description of pulsar research, presenting key techniques, background information and results.
A thoroughly revised third edition, covering recent advances in the field and including an updated catalogue of all known pulsars.
Pulsars are rapidly spinning neutron stars, the collapsed cores of once massive stars that ended their lives as supernova explosions. In this book, Geoff McNamara explores the history, subsequent discovery and contemporary research into pulsar astronomy. The story of pulsars is brought right up to date with the announcement in 2006 of a new breed of pulsar, Rotating Radio Transients (RRATs), which emit short bursts of radio signals separated by long pauses. These may outnumber conventional radio pulsars by a ratio of four to one. Geoff McNamara ends by pointing out that, despite the enormous success of pulsar research in the second half of the twentieth century, the real discoveries are yet to be made including, perhaps, the detection of the hypothetical pulsar black hole binary system by the proposed Square Kilometre Array - the largest single radio telescope in the world.
Now in its fourth edition, Pulsar Astronomy provides a thoroughly revised and updated introduction to the field of pulsar astronomy.
We present the results of a large-area survey for millisecond pulsars (MSPs) at moderately high galactic latitudes with the 64 m Parkes radio telescope, along with follow-up timing and optical studies of the newly-discovered pulsars and several others. Major results include the first precise measurement of the mass of a fully recycled pulsar and measurement of orbital period decay in a double neutron star binary system allowing a test of general relativity along with improved measurements of the neutron star masses. In a survey of approx. 4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. Several of these recycled pulsars are particularly interesting: PSR J1528-3146 is in a circular orbit with a companion of at least 0.94 solar masses; it is a member of the recently recognized class of intermediate mass binary pulsar (IMBP) systems with massive white dwarf companions. We have detected optical counterparts for this and one other IMBP system; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age consistently overestimates the time since the end of mass accretion in these recycled systems. This result implies that the pulsar spin period at the end of the accretion phase is not dramatically shorter than the observed period as is generally assumed. PSR J1600-3053 is among the best high-precision timing pulsars known and should be very useful as part of an ensemble of pulsars used to detect very low frequency gravitational waves. PSR J1738+0333 has an optical counterpart which, although not yet well-studied, has already allowed a preliminary measurement of the system's mass ratio. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay signature in the pulse timing data which has allowed the most precise measurement of the mass of a millisecond pulsar: 1.438 ± 0.024 solar masses. Our accurate parallax distance measurement, d = 1.14 +0.08 / -0.07 kpc, combined with the mass of the optically-detected companion, 0.2038 ± 0.022 solar masses, will provide an important calibration for white dwarf models relevant to other LMBP companions. We have measured the decay of the binary period of the double neutron star system B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, 1.3584 ± 0.0097 solar masses, and companion, 1.3544 ± 0.0097 solar masses, as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as B2127+11A and B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62 using the 100-m Green Bank Telescope (GBT). These pulsars are the first objects discovered with the GBT. We briefly describe a wide-bandwidth coherent dedispersion backend used for some of the high precision pulsar timing observations presented here.
Provides disc version of printed format, plus supplemental photographs covering the entire conference.
"Derived in part from work originally published in the Philosophical Transactions of the Royal Society, series A (Phil. Trans. R. Soc. A, 360, 2649-3004, 2002)."--t.p.
This book presents the theory of the electrodynamic phenomena that occur in the magnetosphere of a pulsar. It also provides a clear picture of the formation and evolution of neutron stars. The authors address the basic physical processes of electron-positron plasma production, the generation of electric fields and currents, and the emission of radio waves and gamma rays. The book also reviews the current observational data, and devotes a complete chapter to a detailed comparison of this data with accepted theory and with some recent theoretical predictions. Tables containing the values of the physical parameters of all observed radio pulsars are also provided.