Download Free Pseudomonas Infection And Alginates Book in PDF and EPUB Free Download. You can read online Pseudomonas Infection And Alginates and write the review.

The concept of this book arose out of an international workshop, which we organized and held at the University of Wales Conference Centre at Gregynog. The workshop was the first occasion on which researchers from all the different disciplines concerned with the extracellular virulence factors of mucoid strains of Pseudomonas aeruginosa in relation to cystic fibrosis (CF) had met to discuss this multifaceted problem. It was deemed a particularly timely moment to gather together experts for the exchange of facts, ideas and hypotheses. No formal abstracts were presented and no proceedings were published. But during the succeed ing months the organizers were persuaded by a number of participants that a wider audience should benefit from what had proved to be such a fruitful cross-fertilization of expertise. Thus we moved from being workshop organizers to book editors, sure in the knowledge that at least we had a willing and enthusiastic set of contributors! It should be stressed, however, that this book is not a transcript of that workshop. Not all those participants are authors, and some new names have been added. Instead we have focused on alginate as an extracellular virulence factor of P. aeruginosa in CF pulmonary infections. Recent advances in the biochemistry and molecular genetics of alginate bio synthesis, as well as in our understanding of the basic defect in CF and isolation of the gene, mean that the book is even more timely than when first planned.
Biofilms -- Science and Technology covers the main topics of biofilm formation and activity, from basic science to applied aspects in engineering and medicine. The book presents a masterly discussion of microbial adhesion, the metabolism of microorganisms in biofilms, modelling of mass transfer and biological reaction within biofilms, as well as the behaviour of these microbial communities in industry (waste water treatment, heat exchanger biofouling, membranes, food processing) and in medicine (teeth, implants, prosthetic devices). Laboratory techniques and industrial monitoring methods are also presented. The book is directed at readers at the postgraduate level and is organised as a textbook, containing 11 chapters, a glossary, and a detailed subject index.
"Alginates: Biology and Applications" provides an overview of the state of art of alginate material properties, genetics and the molecular mechanisms underlying alginate biosynthesis as well as applications of tailor-made alginates in medicine, food and biotechnology. Topics treated are: material properties of alginates, alginate production: precursor biosynthesis, polymerization and secretion, bacterial system for alginate uptake and degradation, enzymatic alginate modification, alginate gene regulation, role of alginate in bacterial biofilms, microbial production of alginates: physiology and process aspects, alginate-based blends and nano/microbeads, applications of alginates in food, alginate and its comonomer mannuronic acid: medical relevance as drugs.
Microbial extracellular polymeric substances (EPS) are the key components for the aggregation of microorganisms in biofilms, flocs and sludge. They are composed of polysaccharides, proteins, nucleic acids, lipids and other biological macromolecules. EPS provide a highly hydrated gel matrix in which microbial cells can establish stable synergistic consortia. Cohesion and adhesion as well as morphology, structure, biological function and other properties such as mechanical stability, diffusion, sorption and optical properties of microbial aggregates are determined by the EPS matrix. Also, the protection of biofilm organisms against biocides is attributed to the EPS. Their matrix allows phase separation in biofiltration and is also important for the degradation of particulate material which is of great importance for the self purification processes in surface waters and for waste water treatment.
The extracellular matrix (ECM) is an acellular three-dimensional network composed of proteins, glycoproteins, proteoglycans and exopolysaccharides. It primarily serves as a structural component in the tissues and organs of plants and animals, or forms biofilms in which bacterial cells are embedded. ECMs are highly dynamic structures that undergo continuous remodeling, and disruptions are frequently the result of pathological processes associated with severe diseases such as arteriosclerosis, neurodegenerative illness or cancer. In turn, bacterial biofilms are a source of concern for human health, as they are associated with resistance to antibiotics. Although exopolysaccharides are crucial for ECM formation and function, they have received considerably little attention to date. The respective chapters of this book comprehensively address such issues, and provide reviews on the structural, biochemical, molecular and biophysical properties of exopolysaccharides. These components are abundantly produced by virtually all taxa including bacteria, algae, plants, fungi, invertebrates and vertebrates. They include long unbranched homopolymers (cellulose, chitin/chitosan), linear copolymers (alginate, agarose), peptoglycans such as murein, heteropolymers like a variety of glycosaminoglycans (hyaluronan, dermatan, keratin, heparin, Pel), and branched heteropolymers such as pectin and hemicellulose. A separate chapter is dedicated to modern industrial and biomedical applications of exopolysaccharides and polysaccharide-based biocomposites. Their unique chemical, physical and mechanical properties have attracted considerable interest, inspired basic and applied research, and have already been harnessed to form structural biocomposite hybrids for tailor-made applications in regenerative medicine, bioengineering and biosensor design. Given its scope, this book provides a substantial source of basic and applied information for a wide range of scientists, as well as valuable textbook for graduate and advanced undergraduate students.
Assembling the latest research by an international group of contributors, this volume covers the epidemiology, pathogenesis, clinical features, and control measures of this elusive microorganism. It will provide a deeper understanding of the pathogen to physicians and surgeons caring for patients infected, or at risk of becoming infected, with Pseudomonas Aeruginosa.
Stabilisers, thickeners and gelling agents are extracted from a variety of natural raw materials and incorporated into foods to give the structure, flow, stability and eating qualities desired by consumers. These additives include traditional materials such as starch, a thickener obtained from many land plants; gelatine, an animal by-product giving characteristic melt-in-the-mouth gels; and cellulose, the most abundant structuring polymer in land plants. Seed gums and other materials derived from sea plants extend the range of polymers. Recently-approved additives include the microbial polysaccharides of xanthan, gellan and pullulan. This book is a highly practical guide to the use of polymers in food technology to stabilise, thicken and gel foods, resulting in consistent, high quality products. The information is designed to be easy to read and assimilate. New students will find chapters presented in a standard format, enabling key points to be located quickly. Those with more experience will be able to compare and contrast different materials and gain a greater understanding of the interactions that take place during food production. This concise, modern review of hydrocolloid developments will be a valuable teaching resource and reference text for all academic and practical workers involved in hydrocolloids in particular, and food development and production in general.
The Perfect Slime presents the latest state of knowledge and all aspects of the Extracellular Polymeric Substances, (EPS) matrix – from the ecological and health to the antifouling perspectives. The book brings together all the current material in order to expand our understanding of the functions, properties and characteristics of the matrix as well as the possibilities to strengthen or weaken it. The EPS matrix represents the immediate environment in which biofilm organisms live. From their point of view, this matrix has paramount advantages. It allows them to stay together for extended periods and form synergistic microconsortia, it retains extracellular enzymes and turns the matrix into an external digestion system and it is a universal recycling yard, it protects them against desiccation, it allows for intense communication and represents a huge genetic archive. They can remodel their matrix, break free and eventually, they can use it as a nutrient source. The EPS matrix can be considered as one of the emergent properties of biofilms and are a major reason for the success of this form of life. Nevertheless, they have been termed the “black matter of biofilms” for good reasons. First of all: the isolation methods define the results. In most cases, only water soluble EPS components are investigated; insoluble ones such as cellulose or amyloids are much less included. In particular in environmental biofilms with many species, it is difficult to impossible isolate, separate the various EPS molecules they are encased in and to define which species produced which EPS. The regulation and the factors which trigger or inhibit EPS production are still very poorly understood. Furthermore: bacteria are not the only microorganisms to produce EPS. Archaea, Fungi and algae can also form EPS. This book investigates the questions, What is their composition, function, dynamics and regulation? What do they all have in common?
Revised edition of: Oxford specialist handbook of paediatric respiratory medicine. 2008.
This book provides a comprehensive analysis of microbial polysaccharides, their current uses, and highlights biomedical opportunities. The topics comprise principally a) their extraction, isolation, purification and advanced production processes; b) characterization of their structural, physicochemical, and biological properties, among others, by several techniques; c) description of the advanced functionalization and modification methods for the polysaccharide based-material; and d) their applications and uses in medical and pharmaceutical fields. Each chapter is written by world-renowned academics and practitioners on their field. This is an essential reference for students in biomedical, chemical, material, and microbiology engineering as well as researchers and professionals in the medical field.