Download Free Protocols And Applications In Enzymology Book in PDF and EPUB Free Download. You can read online Protocols And Applications In Enzymology and write the review.

Protocols and Applications in Enzymology provides instruction on the experimental procedures of enzyme isolation techniques, innovative screening techniques, and instrument enabled enzyme assays and their underlying principles, among other protocols. The book serves as a one-stop solution for those working with different enzyme protocols in the fields of biochemistry, microbiology, biotechnology and allied subjects. Each chapter offers a full overview of protocol key resources, materials required, quantifiable and statistical analysis, optimization and troubleshooting, safety considerations, and standards. Applications are discussed across distribution and diversity of microbial enzymes, enzyme screening, enzymes in solid state fermentations, enzyme assays, enzyme kinetics, and biotechnological uses. - Provides step-by-step instruction on enzyme protocols and applications, with actionable discussions of needed resources, materials, quantification and statistical analysis, optimization and troubleshooting, safety considerations and standards - Presents easy to read, reproducible protocols for researchers and students across academia and industry - Includes color diagrams that illustrate key concepts
A practice-oriented guide to assaying more than 100 of the most important enzymes, complete with the theoretical background and specific protocols for immediate use in the biochemical laboratory. Now expanded with a new section on metal ion determination.
Extending the range of enzymatic catalysis by using non-aqueous media has now developed into a powerful approach in biochemistry and biotechnology. One peculiar feature which distinguishes it from the conventional enzymology (carried out in aqueous buffers) is that the awareness of different parameters that control and influence the behaviour of enzymes in such environments has emerged rather slowly. Science is about being able to repeat what somebody else has done. Absence of knowledge about such well-defined parameters/fac tors has sometimes made some workers rather cautious and diffident about using this approach in their laboratories. But for this, non-aqueous enzymol ogy would be more widely practised. It is these thoughts that made me feel that the availability of some well-defined protocols for various applications invol ving enzymes in non-aqueous environments would further catalyze the growth of this area. Hence this book, in which each chapter has some protocols in a specific area. The protocols are preceded by brief background material. The early chapters, which are of general importance, concern control of water ac tivity and stabilization via immobilization. Some subsequent chapters provide the protocols for transformations involving lipids and carbohydrates, peptide synthesis, and preparation of chiral compounds. The disproportionate focus on lipases is not a coincidence; this class of enzymes has been used more often than others in non-aqueous enzymology.
Enzymes: Novel Biotechnological Approaches for the Food Industry provides an in-depth background of the most up-to-date scientific research and information related to food biotechnology and offers a wide spectrum of biological applications. This book addresses novel biotechnological approaches for the use of enzymes in the food industry to help readers understand the potential uses of biological applications to advance research. This is an essential resource to researchers and both undergraduate and graduate students in the biotechnological industries. - Provides fundamental and rigorous scientific information on enzymes - Illustrates enzymes as tools to achieve value and quality to a product, either in vitro or in vivo - Presents the most updated knowledge in the area of food biotechnology - Demonstrates novel horizons and potential for the use of enzymes in industrial applications
This book provides guidance to those wishing to create enzyme variants. It covers such topics as a simple method for generating site-specific mutations within bacterial chromosomes and the engineering of two difference types of rare-cutting endonucleases.
This volume provides an essential update on fundamental issues, current and new applications, as well as practical protocols to explore the extensive applications of lipases and the potential application of phospholipases. After an overview, the book delves into activity screening and expression, optimization of the biocatalyst production and performances, and applications of lipases, phospholipases, and esterases. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Lipases and Phospholipases: Methods and Protocols, Second Editionserves as an updated reference book for the large scientific community, both seasoned and novice, working with lipases, phospholipases, and related enzymes.
Volume 608 of the series Methods in Enzymology covers key aspects of enzyme discovery, engineering tools and platforms, and examples of applications in the enzymology of synthetic biology. Detailed methods for laboratory use of enzymes in synthetic biology applications Informative case history examples illustrating how enzyme and metabolic engineering are used to generate new products Emphasises latest developments in laboratory automation for the engineering of biology Covers many aspects of the design, build, test, learn cycle used in synthetic biology
Methods to Determine Enzymatic Activity is a textbook about industrial enzymes. The book features definitions, classifications and applications of selected enzymes important in industry and in biotechnological processes. Analytical methods for these enzymes are also included in the text. The main objective of this textbook is to provide readers information focused on the current analysis methods of enzymatic activity at qualitative and quantitative levels. Each chapter is about one specific enzyme and contains information about its substrate and some biochemical properties. The methodologies are presented as an experimental protocol allowing interested readers to reproduce the experimental methods detailed within the textbook. These protocols contain the principle of the technique, materials, methods, and all steps necessary for the determination of enzyme activity and interpretation of results. Each methodology is illustrated with photos and schemes for a better and clear understanding. This book, therefore, uniquely brings modern analysis techniques of industrial enzymes in a single easy to understand volume. This textbook is suitable for undergraduate enzymology courses and advanced industrial biotechnology and microbiology courses.
This reference book originates from the interdisciplinary research cooperation between academia and industry. In three distinct parts, latest results from basic research on stable enzymes are explained and brought into context with possible industrial applications. Downstream processing technology as well as biocatalytic and biotechnological production processes from global players display the enormous potential of biocatalysts. Application of "extreme" reaction conditions (i.e. unconventional, such as high temperature, pressure, and pH value) - biocatalysts are normally used within a well defined process window - leads to novel synthetic effects. Both novel enzyme systems and the synthetic routes in which they can be applied are made accessible to the reader. In addition, the complementary innovative process technology under unconventional conditions is highlighted by latest examples from biotech industry.
This book provides a comprehensive introduction to all aspects of enzyme engineering, from fundamental principles through to the state-of-the-art in research and industrial applications. It begins with a brief history, describing the milestones of advancement in enzyme science and technology, before going on to cover the fundamentals of enzyme chemistry, the biosynthesis of enzymes and their production. Enzyme stability and the reaction kinetics during enzymatic reactions are presented to show how enzymes function during catalysis and the factors that affect their activity. Methods to improve enzyme performance are also presented, such as cofactor regeneration and enzyme immobilization. The book emphasizes and elaborates on the performance and characteristics of enzymes at the molecular level. Finally, the book presents recent advances in enzyme engineering and some key industrial application of enzymes addressing the present needs of society. This book presents essential information not only for undergraduate and graduate students, but also for researchers in academia and industry, providing a valuable reference for the development of commercial applications of enzyme technology.