Download Free Proteins And Nucleic Acids Book in PDF and EPUB Free Download. You can read online Proteins And Nucleic Acids and write the review.

This book is a self-contained introduction to the theory of atomic motion in proteins and nucleic acids. An understanding of such motion is essential because it plays a crucially important role in biological activity. The authors, both of whom are well known for their work in this field, describe in detail the major theoretical methods that are likely to be useful in the computer-aided design of drugs, enzymes and other molecules. A variety of theoretical and experimental studies is described and these are critically analyzed to provide a comprehensive picture of dynamic aspects of biomolecular structure and function. The book will be of interest to graduate students and research workers in structural biochemistry (X-ray diffraction and NMR), theoretical chemistry (liquids and polymers), biophysics, enzymology, molecular biology, pharmaceutical chemistry, genetic engineering and biotechnology.
In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.
The choice of title for this collective volume reflects the desire of the editors and authors to make clear that, while the bulk of the material is concerned with luminescence, other aspects of the excited state have not been excluded. In the five years which have elapsed since the publication of the classical monograph of Konev, a wealth of new information has ap peared on the emission properties of proteins and nucleic acids. Indeed, since new publications in this area appear to be proliferating in a geometric ratio, this may be the last opportunity to provide a comprehensive summary of the field in a book which is not of prohibitive length. This is what we have attempted to do here. While the orientation of each chapter naturally reflects the interests and point of view of the author, there has been a general effort to present .a critical assessment of existing results and interpretations, rather than a compendium of data with minimal comment. Finally, it should be stressed that the rapid evolution of the subject at the time of writing makes it inevitable that the book will age to some degree over the next few years, although this will occur at differing rates for the various chapters. We can only hope that most of the material in this interim summing-up will prove resistant to the erosion of time and provide a solid foundation for further progress.
This book provides both in-depth background and up-to-date information in this area. The chapters are organized by general themes and principles, written by experts who illustrate topics with current findings. Topics covered include: - the role of ions and hydration in protein-nucleic acid interactions - transcription factors and combinatorial specificity - indirect readout of DNA sequence - single-stranded nucleic acid binding proteins - nucleic acid junctions and proteins, - RNA protein recognition - recognition of DNA damage. It will be a key reference for both advanced students and established scientists wishing to broaden their horizons.
Photochemistry of Proteins and Nucleic Acids focuses on the effects of ultraviolet and visible radiations on proteins and nucleic acids. The book first discusses some principles of photochemistry, including the laws of photochemistry and factors influencing photochemical reactions in solutions. The text describes absorption and luminescence spectra of nucleoproteins and their components, including principal absorbing groups in proteins, nucleic acids, and nucleoproteins. The selection also highlights the action of ultraviolet light on proteins; photochemical and photosensitized inactivation of enzymes; and the photochemistry of purine and pyrimidine derivatives. The text also discusses nucleic acids and oligo- and polynucleotides. Topics include photochemical degradation of nucleic acid; kinetics of biological inactivation of nucleic acids; nucleoproteins; and reversibility of nucleic acid photolysis. The book also encompasses the inactivation of viruses, including inactivation studies with a plant virus, bacteriophages, and photochemically produced vaccines. The text also presents some problems in photobiology and some techniques in photochemistry. The text is a good source of information for readers interested in the study of proteins and nucleic acids. Based on the standards and codes from Fo
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.
This volume collects a number of the invited lectures and a few selected contrib utions presented at the International Symposium on Structure and Dynamics of Nucleic Acids, Proteins and Membranes held August 31st through September 5th, 1986, in Riva del Garda, Italy. The title of the conference as well as a number of the topics covered represent a continuation of two previous conferences, the first held in 1982 at the University of California in San Diego, and the second in 1984 in Rome at the Accademia dei Lincei. These two earlier conferences have been documented in Structure and Dynamics: Nucleic Acids and Proteins, edited by E. Clementi and R. H. Sarma, Adenine Press, New York, 1983, and Structure and Motion: Membranes, Nucleic Acids and Proteins, edited by E. Clementi, G. Corongiu, M. H. Sarma and R. H. Sarma, Adenine Press, New York, 1985. At this conference in Riva del Garda we were very hesitant to keep the name of the conference the same as the two previous ones. Indeed, a number of topics discussed in this conference were not included in the previous ones and even the emphasis of this gathering is only partly reflected in the conference title. An alternative title would have been Structure and Dynamics of Nucleic Acids, Proteins, and Higher Functions, or, possibly, "higher components" rather than "higher functions.