Download Free Protein Trafficking In Plant Cells Book in PDF and EPUB Free Download. You can read online Protein Trafficking In Plant Cells and write the review.

The highly structured eucaryotic cell with its complex division of biochemical labour requires a distinct protein complement in each cellular structure and compartment. Nuclear coded and cytosolically synthesized polypeptides are specifically sorted to every corner of the cell in a post- or co-translational manner. The presence of separate genomes and protein translation machineries in plastids and mitochondria requires further coordination not only on the transcriptional, translational but also most likely on the protein import level. Numerous different protein transport systems have developed and coexist within plant cells to ensure the specific and selective composition of every sub-cellular compartment. This volume summarizes the current knowledge on protein trafficking in plant cells. Aside from the fundamental aspects in cell biology of how specific pre-protein sorting and translocation across biological membranes is achieved, a major focus is on transport, modification and deposition of plant storage proteins. The increasing use of plants as bioreactors to provide custom-designed proteins of different usage requires detailed understanding of these events. This text is directed not only at students and professionals in plant cell and molecular biology but also at those involved in horticulture and plant breeding. It is intended to serve as a text and guide for graduate-level courses on plant cell biology and as a valuable supplement to courses in plant physiology and development. Scientists in other disciplines who wish to learn more about protein translocation in plants will also find this text an up-to-date source of information and reference.
The highly structured eucaryotic cell with its complex division of biochemical labour requires a distinct protein complement in each cellular structure and compartment. Nuclear coded and cytosolically synthesized polypeptides are specifically sorted to every corner of the cell in a post- or co-translational manner. The presence of separate genomes and protein translation machineries in plastids and mitochondria requires further coordination not only on the transcriptional, translational but also most likely on the protein import level. Numerous different protein transport systems have developed and coexist within plant cells to ensure the specific and selective composition of every sub-cellular compartment. This volume summarizes the current knowledge on protein trafficking in plant cells. Aside from the fundamental aspects in cell biology of how specific pre-protein sorting and translocation across biological membranes is achieved, a major focus is on transport, modification and deposition of plant storage proteins. The increasing use of plants as bioreactors to provide custom-designed proteins of different usage requires detailed understanding of these events. This text is directed not only at students and professionals in plant cell and molecular biology but also at those involved in horticulture and plant breeding. It is intended to serve as a text and guide for graduate-level courses on plant cell biology and as a valuable supplement to courses in plant physiology and development. Scientists in other disciplines who wish to learn more about protein translocation in plants will also find this text an up-to-date source of information and reference.
Since the discovery of the gene for green fluorescent protein (GFP), derived from jellyfish, this protein that emits a green glow has initiated a revolution in molecular biosciences. With this tool, it is now possible to visualize nearly any protein of interest in any cell or tissue of any species. Since the publication of the first edition, there have been tremendously significant technological advances, including development of new mutant variants. Proteins are now available in yellow and blue, and Novel Fluorescent Proteins (NFPs) have expanded their utility in developing biosensors, biological markers, and other biological applications. This updated, expanded new edition places emphasis on the rise of NFPs, including new chapters on NFP properties with detailed protocols, applications of GFPs and NFPs in industry research, and biosensors. This book provides a solid theoretical framework, along with detailed, practical guidance on use of GFPs and NFPs with discussion of potential pitfalls. The expert contributors provide real examples in showing how to tailor GFP/NFP to specific systems, maximize expression, and enhance detection.
Endocytosis is a fundamental biological process, which is conserved among all eukaryotes. It is essential not only for many physiological and signalling processes but also for interactions between eukaryotic cells and pathogens or symbionts. This book covers all aspects of endocytosis in both lower and higher plants, including basic types of endocytosis, endocytic compartments, and molecules involved in endocytic internalization and recycling in diverse plant cell types. It provides a comparison with endocytosis in animals and yeast and discusses future prospects in this new and rapidly evolving plant research field. Readers will find an overview of the state-of-the-art methods and techniques applied in plant endocytosis research.
Protein Targeting, Transport, and Translocation presents an in-depth overview on the topic of protein synthesis, covering all areas of protein science, including protein targeting, secretion, folding, assembly, structure, localization, quality control, degradation, and antigen presentation. Chapters also include sections on the history of the field as well as summary panels for quick reference. Numerous color illustrations complement the presentation of material. This book is an essential reference for anyone in biochemistry and protein science, as well as an excellent textbook for advanced students in these and related fields. Basic principles and techniques Targeting adn sorting sequences Protein export in bacteria Membrane protein integration into ER and bacterial membranes Protein translocation across the ER Disulfide bond formation in prokaryotes and eukaryotes Quality control in the export pathway Import of proteins into organelles The secretory pathway Vesicular transport Spectacular color throughout
Cell surface membranes have long been characterized as two-dimensional fluids whose mobile components are randomized by diffusion in the plane of the membrane bilayer. Recent research has indicated that cell surface membranes are highly organized and ordered and that important functional units of membranes appear as arrays of interacting molecules rather than as single, freely diffusing molecules. Mobility and Proximity in Biological Membranes provides an overview of the results obtained from biophysical methods for probing the organization of cell surface membranes. These results are presented in the context of detailed treatments of the theory and the technical demands of each of the methods. The book describes a versatile and easily applied mode for investigating molecular proximities in plasma membranes in a flow cytometer. Its analysis of lipid fluidity and viscosity of membranes and the rotational mobility of proteins offers intimate insight into the physical chemistry of biological membranes. The electrophysiology of lymphocytes is presented with focus on its importance in different diseases. New techniques are described, and new data, new possibilities, and future trends are presented by world experts. This book's chapters can serve both as guides to the existing literature and as starting points for new experiments and approaches associated with problems in membrane function.
Membrane proteins are essential determinants of many biological processes in plants. They function in metabolic processes, signal transduction, transport of small molecules and polymers across endo- and plasma membranes, and intercompartmental trafficking of proteins, lipids, and cell wall components. During these integrative processes, dynamic interactions of membrane proteins with other membrane or soluble components are thought to provide a high degree of flexibility that usually characterizes higher plants. This concept is supported by the recent release of a first, partial Arabidopsis interactome by the Arabidopsis Interactome Mapping Consortium (http://www.sciencemag.org/content/333/6042/601.full.htm). The Arabidopsis interactome reveals a strong enrichment of a few network communities, including those for transmembrane transport and vesicle trafficking. Strikingly, the large transmembrane transport community shares a high amount of proteins with the vesicle trafficking community suggesting a strong physical and functional overlap and interaction.
In plant cells, the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. Transactions at the plasma membrane include uptake of water and essential mineral nutrients, gas exchange, movement of metabolites, transport and perception of signaling molecules, and initial responses to external biota. Selective transporters control the rates and direction of small molecule movement across the membrane barrier and manipulate the turgor that maintains plant form and drives plant cell expansion. The plasma membrane provides an environment in which molecular and macromolecular interactions are enhanced by the clustering of proteins in oligimeric complexes for more efficient retention of biosynthetic intermediates, and by the anchoring of protein complexes to promote regulatory interactions. The coupling of signal perception at the membrane surface with intracellular second messengers also involves transduction across the plasma membrane. Finally, the generation and ordering of the external cell walls involves processes mediated at the plant cell surface by the plasma membrane. This volume is divided into three sections. The first section describes the basic mechanisms that regulate all plasma membrane functions. The second describes plasma membrane transport activity. The final section of the book describes signaling interactions at the plasma membrane. These topics are given a unique treatment in this volume, as the discussions are restricted to the plasma membrane itself as much as possible. A more complete knowledge of the plasma membrane’s structure and function is essential to current efforts to increase the sustainability of agricultural production of food, fiber, and fuel crops.
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.