Download Free Protein Networks And Pathway Analysis Book in PDF and EPUB Free Download. You can read online Protein Networks And Pathway Analysis and write the review.

From the beginning of the OMICs biology era, science has been pursuing the reduction of the complex "genome-wide" assays in order to understand the essential biology that lies beneath it. In Protein Networks and Pathway Analysis, expert practitioners present a compilation of methods of functional data analysis, often referred to as "systems biology," and its applications in drug discovery, medicine and basic disease research. The volume is divided into three convenient sections, covering the elucidation of protein, compound and gene interactions, analytical tools, including networks, interactome and ontologies, and applications of functional analysis. As a volume in the highly successful Methods in Molecular BiologyTM series, this work provides detailed descriptions and hands-on implementation advice. Authoritative and cutting-edge, Protein Networks and Pathway Analysis presents both "wet lab" experimental methods and computational tools in order to cover a broad spectrum of issues in this fascinating new field.
In this volume, expert practitioners present a compilation of methods of functional data analysis (often referred to as “systems biology”) and its applications in drug discovery, medicine, and basic disease research. It covers such important issues as the elucidation of protein, compound and gene interactions, as well as analytical tools, including networks, interactome and ontologies, and clinical applications of functional analysis. As a volume in the highly successful Methods in Molecular Biology series, this work provides detailed description and hands-on implementation advice. Reputable, comprehensive, and cutting-edge, Biological Networks and Pathway Analysis presents both “wet lab” experimental methods and computational tools in order to cover a broad spectrum of issues in this fascinating new field.
An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research.
Biological Network Analysis: Trends, Approaches, Graph Theory, and Algorithms considers three major biological networks, including Gene Regulatory Networks (GRN), Protein-Protein Interaction Networks (PPIN), and Human Brain Connectomes. The book's authors discuss various graph theoretic and data analytics approaches used to analyze these networks with respect to available tools, technologies, standards, algorithms and databases for generating, representing and analyzing graphical data. As a wide variety of algorithms have been developed to analyze and compare networks, this book is a timely resource. - Presents recent advances in biological network analysis, combining Graph Theory, Graph Analysis, and various network models - Discusses three major biological networks, including Gene Regulatory Networks (GRN), Protein-Protein Interaction Networks (PPIN) and Human Brain Connectomes - Includes a discussion of various graph theoretic and data analytics approaches
The analysis of protein-protein interactions is fundamental to the understanding of cellular organization, processes, and functions. Proteins seldom act as single isolated species; rather, proteins involved in the same cellular processes often interact with each other. Functions of uncharacterized proteins can be predicted through comparison with the interactions of similar known proteins. Recent large-scale investigations of protein-protein interactions using such techniques as two-hybrid systems, mass spectrometry, and protein microarrays have enriched the available protein interaction data and facilitated the construction of integrated protein-protein interaction networks. The resulting large volume of protein-protein interaction data has posed a challenge to experimental investigation. This book provides a comprehensive understanding of the computational methods available for the analysis of protein-protein interaction networks. It offers an in-depth survey of a range of approaches, including statistical, topological, data-mining, and ontology-based methods. The author discusses the fundamental principles underlying each of these approaches and their respective benefits and drawbacks, and she offers suggestions for future research.
Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples.
System Biology encompasses the knowledge from diverse fields such as Molecular Biology, Immunology, Genetics, Computational Biology, Mathematical Biology, etc. not only to address key questions that are not answerable by individual fields alone, but also to help in our understanding of the complexities of biological systems. Whole genome expression studies have provided us the means of studying the expression of thousands of genes under a particular condition and this technique had been widely used to find out the role of key macromolecules that are involved in biological signaling pathways. However, making sense of the underlying complexity is only possible if we interconnect various signaling pathways into human and computer readable network maps. These maps can then be used to classify and study individual components involved in a particular phenomenon. Apart from transcriptomics, several individual gene studies have resulted in adding to our knowledge of key components that are involved in a signaling pathway. It therefore becomes imperative to take into account of these studies also, while constructing our network maps to highlight the interconnectedness of the entire signaling pathways and the role of that particular individual protein in the pathway. This collection of articles will contain a collection of pioneering work done by scientists working in regulatory signaling networks and the use of large scale gene expression and omics data. The distinctive features of this book would be: Act a single source of information to understand the various components of different signaling network (roadmap of biochemical pathways, the nature of a molecule of interest in a particular pathway, etc.), Serve as a platform to highlight the key findings in this highly volatile and evolving field, and Provide answers to various techniques both related to microarray and cell signaling to the readers.
SARS was the ?rst new plague of the twenty-?rst century. Within months, it spread worldwide from its “birthplace” in Guangdong Province, China, affecting over 8,000 people in 25 countries and territories across ?ve continents. SARS exposed the vulnerability of our modern globalised world to the spread of a new emerging infection. SARS (or a similar new emerging disease) could neither have spread so rapidly nor had such a great global impact even 50 years ago, and arguably, it was itself a product of our global inter-connectedness. Increasing af?uence and a demand for wild-game as exotic food led to the development of large trade of live animal and game animal markets where many species of wild and domestic animals were co-housed, providing the ideal opportunities for inter-species tra- mission of viruses and other microbes. Once such a virus jumped species and attacked humans, the increased human mobility allowed the virus the opportunity for rapid spread. An infected patient from Guangdong who stayed for one day at a hotel in Hong Kong led to the transmission of the disease to 16 other guests who travelled on to seed outbreaks of the disease in Toronto, Singapore, and Vietnam, as well as within Hong Kong itself. The virus exploited the practices used in modern intensive care of patients with severe respiratory disease and the weakness in infection control practices within our health care systems to cause outbreaks within hospitals, further amplifying the spread of the disease. Health-care itself has become a two-edged sword.
While extremely large datasets describing gene sequences, mRNA transcripts, protein abundance, and metabolite concentrations are increasingly commonplace, these represent only starting ‘parts lists’ that are usually insufficient to unlock mechanistic insights on their own right. Fortunately, as Network Biology: Methods and Applications examines, concepts emerging from the study of biological entities such as networks (e.g. functional interactions linking genes, proteins, metabolites, etc.) suggest that order rather than chaos prevails, with such principles as modular and hierarchical organization, reactive information-driven causal-response behaviours, systems robustness, co-evolution, and self-organization guiding the way. This volume presents detailed, practical descriptions of the experimental and computational approaches currently prevalent in network biology as written by practiced experts in the field. Written in the highly successful Methods in Molecular BiologyTM series format, relevant chapters contain introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and accessible, Network Biology: Methods and Applications provides an ensemble of procedures that will be of great value to a broad assortment of readers, ranging from graduate students to seasoned professionals looking to polish their skill sets.
This volume explores techniques that study interactions between proteins in different species, and combines them with context-specific data, analysis of omics datasets, and assembles individual interactions into higher-order semantic units, i.e., protein complexes and functional modules. The chapters in this book cover computational methods that solve diverse tasks such as the prediction of functional protein-protein interactions; the alignment-based comparison of interaction networks by SANA; using the RaptorX-ComplexContact webserver to predict inter-protein residue-residue contacts; the docking of alternative confirmations of proteins participating in binary interactions and the visually-guided selection of a docking model using COZOID; the detection of novel functional units by KeyPathwayMiner and how PathClass can use such de novo pathways to classify breast cancer subtypes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary hardware- and software, step-by-step, readily reproducible computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Protein-Protein Interaction Networks: Methods and Protocols is a valuable resource for both novice and expert researchers who are interested in learning more about this evolving field.