Download Free Protein Kinases In Development And Disease Book in PDF and EPUB Free Download. You can read online Protein Kinases In Development And Disease and write the review.

Protein Kinases in Development and Disease discusses and reviews important, but often neglected, kinases. A good representation of current model organisms from plants and C. elegans to mice are used as the basis to illustrate how we can use our understanding of normal development to learn about disease. - Reviews kinases, the fundamental regulators of most biological processes that have key roles in the development of all organisms - Includes a broad scope of topics that are addressed - Allows researchers and newcomers to this research area to gain a thorough picture of the current knowledge
This open access book focuses on the molecular mechanism of congenital heart disease and pulmonary hypertension, offering new insights into the development of pulmonary circulation and the ductus arteriosus. It describes in detail the molecular mechanisms involved in the development and morphogenesis of the heart, lungs and ductus arteriosus, covering a range of topics such as gene functions, growth factors, transcription factors and cellular interactions, as well as stem cell engineering technologies. The book also presents recent advances in our understanding of the molecular mechanism of lung development, pulmonary hypertension and molecular regulation of the ductus arteriosus. As such, it is an ideal resource for physicians, scientists and investigators interested in the latest findings on the origins of congenital heart disease and potential future therapies involving pulmonary circulation/hypertension and the ductus arteriosus.
Receptor tyrosine kinases are cell-surface receptors that respond to numerous hormones and growth factors, including insulin, insulin-like growth factors, epidermal growth factor, and nerve growth factor. They activate highly conserved intracellular signaling pathways that regulate cell proliferation, differentiation, and metabolism, playing essential roles in developing and adult animals. This book examines the nature of these receptors and their ligands, the molecular mechanisms that they regulate within cells, and the roles of the receptors in normal physiology and control of embryogenesis. It also discusses how dysfunction of these mechanisms can contribute to cancer and other diseases.
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Protein kinases are fascinating enzymes that maintain the proper function of nearly every task performed by the cells of the human body. By extracting a phosphate from the energy molecule ATP and linking it to another protein, protein kinases alter the structure and ultimate function of other proteins. In this way, protein kinases help monitor the extracellular environment and integrate signaling cues that, for the most part, are beneficial for human health and survival. However, protein kinases are often dysregulated and responsible for the initiation and progression of many types of cancers, inflammatory disorders, and other diseases. Thus, decades of research have revealed much about how protein kinases are regulated and approaches to inhibit these enzymes to treat disease. However, nearly 30 years since the identification of the first clinically beneficial small molecule protein kinase inhibitor, there are only a few examples where these drugs provide sustained and durable patient responses. The goal of this book is to provide biomedical scientists, graduate, and professional degree students insight into different approaches using small molecules to block specific protein kinase functions that promote disease.
Protein kinase C (PKC), a family of serine-threonine kinases, rocketed to the forefront of the cancer research field in the early 1980’s with its identification as an effector of phorbol esters, natural products with tumor promoting activity. Phorbol esters had long been of interest to the cancer research field due to early studies in the mouse skin carcinogenesis model, which showed that prolonged topical application of phorbol esters promoted the formation of skin tumors on mice previously treated with mutagenic agents. Research in the last years has established key roles for PKC isozymes in the control of cell proliferation, migration, adhesion, and malignant transformation. In addition, there is a large body of evidence linking PKC to invasion and cancer cell metastasis. Moreover, it is now well established that the expression of PKC isozymes is altered in various types of cancers. More importantly, small molecule inhibitors have been developed with significant anti-cancer activity. The relevance of PKC isozymes in cancer signaling is therefore remarkable. This book will have 4 sections. There will be 23 chapters. Each section will have a brief introduction by an expert in the field (~ 1-2 pages).
Kinase drug discovery remains an area of significant interest across academia and in the pharmaceutical industry. There are now around 13 FDA approved small molecule drugs which target kinases and many more compounds in various stages of clinical development. Although there have been a number of reviews/publications on kinase research, this book fills a gap in the literature by considering the current and future opportunities and challenges in targeting this important family of enzymes. The book is forward-looking and identifies a number of hot topics and key areas for kinase drug discovery over the coming years. It includes contributions from highly respected authors with a combined experience in the industry of well over 200 years, which has resulted in a book of great interest to the kinase field and across drug discovery more generally. Readers will gain a real insight into the huge challenges and opportunities which this target class has presented drug discovery scientists. The many chapters cover a wide breadth of topics, are well written and include high quality colour and black and white images. Topics covered include an outline of how medicinal chemistry has been able to specifically exploit this unique target class, along with reflections on the mechanisms of kinases inhibitors. Also covered is resistance to kinase inhibitors caused by amino acid mutations, case studies of kinase programs and reviews areas beyond protein kinases and beyond the human kinome. Also described are modern approaches to finding kinase leads and the book finishes with a reflection of how kinase drug discovery may progress over the coming years.
Leading researchers, from the Novartis group that pioneered Gleevec/GlivecTM and around the world, comprehensively survey the state of the art in the drug discovery processes (bio- and chemoinformatics, structural biology, profiling, generation of resistance, etc.) aimed at generating PTK inhibitors for the treatment of various diseases, including cancer. Highlights include a discussion of the rationale and the progress made towards generating "selective" low molecular-weight kinase inhibitors; an analysis of the normal function, role in disease, and application of platelet-derived growth factor antagonists; and a summary of the factors involved in successful structure-based drug design. Additional chapters address the advantages and disadvantages of in vivo preclinical models for testing protein kinase inhibitors with antitumor activity and the utility of different methods in the drug discovery and development process for determining "on-target" vs "off-target" effects of kinase inhibitors.
The NMDA receptor plays a critical role in the development of the central nervous system and in adult neuroplasticity, learning, and memory. Therefore, it is not surprising that this receptor has been widely studied. However, despite the importance of rhythms for the sustenance of life, this aspect of NMDAR function remains poorly studied. Written