Download Free Protein Kinase A And Human Disease Book in PDF and EPUB Free Download. You can read online Protein Kinase A And Human Disease and write the review.

Protein kinase A (PKA) is an enzyme that modulates the function of other proteins and thus is involved in many processes responsible for cellular regulation. This volume follows the discovery of the first human genetic disorder that is caused by mutations of one of the sub-units of the PKA system. It brings together clinical and basic scientists for an examination of the enzyme and its involvement in human disease.
Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.
This is the first book to assemble the leading researchers in the field of LRRK2 biology and neurology and provide a snapshot of the current state of knowledge, encompassing all major aspects of its function and dysfunction. The contributors are experts in cell biology and physiology, neurobiology, and medicinal chemistry, bringing a multidisciplinary perspective on the gene and its role in disease. The book covers the identification of LRRK2 as a major contributor to the pathogenesis of Parkinson's Disease. It also discusses the current state of the field after a decade of research, putative normal physiological roles of LRRK2, and the various pathways that have been identified in the search for the mechanism(s) of its induction of neurodegeneration.
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
Protein kinases are fascinating enzymes that maintain the proper function of nearly every task performed by the cells of the human body. By extracting a phosphate from the energy molecule ATP and linking it to another protein, protein kinases alter the structure and ultimate function of other proteins. In this way, protein kinases help monitor the extracellular environment and integrate signaling cues that, for the most part, are beneficial for human health and survival. However, protein kinases are often dysregulated and responsible for the initiation and progression of many types of cancers, inflammatory disorders, and other diseases. Thus, decades of research have revealed much about how protein kinases are regulated and approaches to inhibit these enzymes to treat disease. However, nearly 30 years since the identification of the first clinically beneficial small molecule protein kinase inhibitor, there are only a few examples where these drugs provide sustained and durable patient responses. The goal of this book is to provide biomedical scientists, graduate, and professional degree students insight into different approaches using small molecules to block specific protein kinase functions that promote disease.
Kinase drug discovery remains an area of significant interest across academia and in the pharmaceutical industry. There are now around 13 FDA approved small molecule drugs which target kinases and many more compounds in various stages of clinical development. Although there have been a number of reviews/publications on kinase research, this book fills a gap in the literature by considering the current and future opportunities and challenges in targeting this important family of enzymes. The book is forward-looking and identifies a number of hot topics and key areas for kinase drug discovery over the coming years. It includes contributions from highly respected authors with a combined experience in the industry of well over 200 years, which has resulted in a book of great interest to the kinase field and across drug discovery more generally. Readers will gain a real insight into the huge challenges and opportunities which this target class has presented drug discovery scientists. The many chapters cover a wide breadth of topics, are well written and include high quality colour and black and white images. Topics covered include an outline of how medicinal chemistry has been able to specifically exploit this unique target class, along with reflections on the mechanisms of kinases inhibitors. Also covered is resistance to kinase inhibitors caused by amino acid mutations, case studies of kinase programs and reviews areas beyond protein kinases and beyond the human kinome. Also described are modern approaches to finding kinase leads and the book finishes with a reflection of how kinase drug discovery may progress over the coming years.
This comprehensive encyclopedic reference provides rapid access to focused information on topics of cancer research for clinicians, research scientists and advanced students. Given the overwhelming success of the first edition, which appeared in 2001, and fast development in the different fields of cancer research, it has been decided to publish a second fully revised and expanded edition. With an A-Z format of over 7,000 entries, more than 1,000 contributing authors provide a complete reference to cancer. The merging of different basic and clinical scientific disciplines towards the common goal of fighting cancer makes such a comprehensive reference source all the more timely.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.