Download Free Protein Carbohydrate Interactions Book in PDF and EPUB Free Download. You can read online Protein Carbohydrate Interactions and write the review.

This volume is a wide-ranging tool for studying protein-carbohydrate interactions that extend from traditional biochemical methods to state-of-the-art techniques. This book focuses on four different research themes: Part I describes methods for screening and quantifying CAZyme activity; Part II contains methods for investigating the interactions between proteins and carbohydrate ligands; Part III discusses methods for the visualization of carbohydrates and protein-carbohydrate complexes; and Part IV focuses on structural and “omic” approaches for studying systems of CAZymes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Protein-Carbohydrate Interactions: Methods and Protocols is a valuable resource to the glycomics research community. In this continuously advancing field, the methods in this book highlight the biology of glycomics, thus driving biotechnological innovation and solutions for human health and sustainable resources within the emerging green community.
This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.
As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Advances in technologies for the extraction and modification of valuable milk components have opened up new opportunities for the food and nutraceutical industries. New applications for dairy ingredients are also being found. Dairy-derived ingredients reviews the latest research in these dynamic areas.Part one covers modern approaches to the separation of dairy components and manufacture of dairy ingredients. Part two focuses on the significant area of the biological functionality of dairy components and their nutraceutical applications, with chapters on milk oligosaccharides, lactoferrin and the role of dairy in food intake and metabolic regulation, among other topics. The final part of the book surveys the technological functionality of dairy components and their applications in food and non-food products. Dairy ingredients and food flavour, applications in emulsions, nanoemulsions and nanoencapsulation, and value-added ingredients from lactose are among the topics covered.With its distinguished editor and international team of contributors, Dairy-derived ingredients is an essential guide to new developments for the dairy and nutraceutical industries, as well as researchers in these fields. - Summarises modern approaches to the separation of dairy components and the manufacture of dairy ingredients - Assesses advances in both the biological and technological functionality of dairy components - Examines the application of dairy components in both food and non-food products
A comprehensive survey of the topic, ranging from basic molecular research to clinical applications. Critical reviews by leading experts in each field summarize the state of knowledge and discuss the anticipated benefits of novel approaches and strategies. These include the impact of modern analysis techniques on glycobiology, the use of synthetic neoglycoproteins, or the clinical consequences of new insights into the physiological role of lectins and glycoconjugates in pathology, oncology, immunity, neuroscience and reproduction medicine. Throughout, the aim is to separate realistic applications from mere hopes.
This book is the first to be dedicated to the bioinformatics of carbohydrates and glycoproteins. It provides an introduction to this emerging field of science both for the experimentalist working in glycobiology and glycomics, and also for the computer scientist looking for background information for the development of highly sophisticated algorithmic approaches. The book provides an overview of the state-of-the-art in the field, with reviews on databases, and the tools in use for analysis, interpretation, and prediction of the structures of complex carbohydrates, and demonstrates the value of bioinformatics for glycobiology. The availability of comprehensive databases and corresponding bioinformatics tools, to access and analyse the large amounts of experimental data relating to the structure of carbohydrates, will be a prerequisite for the success of the large-scale glycomics projects that aim to decipher new, so far unknown, biological functions of glycans. Efficient bioinformatics descriptions and tools can considerably enhance the efficiency of glycomics research, in terms of data quality, analysis and experimental costs. For a complete understanding of the molecular processes in which carbohydrates are involved, such as protein–carbohydrate interactions and the impact of glycosylation on protein function, knowledge of the 3D structure of the carbohydrate, the protein–carbohydrate complex, or the glycoprotein is often indispensable. This book provides a thorough introduction into methods used for conformational analysis of carbohydrates. Key features: Describes bioinformatic approaches to handle carbohydrate-active enzymes and glycosylation. Provides an overview on bioinformatics tools that facilitate analysis of carbohydrate structures. Gives introduction into molecular modelling of carbohydrate 3D structure and carbohydrates contained in the Protein Databank. Assumes only a basic knowledge of biology and bioinformatics.
This book contains contributions from interdisciplinary scientists to collectively address the issue of targeting carbohydrate recognition for the development of novel therapeutic and diagnostic agents. The book covers (1) biological problems involving carbohydrate recognition, (2) structural factors mediating carbohydrate recognition, (3) design and synthesis of lectin mimics that recognize carbohydrate ligands with high specificity and affinity, and (4) modulation of biological and pathological processes through carbohydrate recognition.