Download Free Protection Of Transportation Facilities Against Earthquakes Book in PDF and EPUB Free Download. You can read online Protection Of Transportation Facilities Against Earthquakes and write the review.

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Since the publication of the successful first edition of Earthquake Protection there have been 110 lethal earthquakes, killing 130 000 people; there have also been significant developments in the field of earthquake risk management, particularly in the modelling and analysis of risk for insurance and financial services. Furthermore, major earthquake disasters, such as the 1994 Northridge earthquake in California, the 1995 Kobe earthquake in Japan and the 1999 Kocaeli earthquake in Turkey have occurred. The experience and knowledge gained through these events have improved our understanding of how to manage, mitigate and work towards the prevention of similar catastrophes. The 1990s were in fact the costliest decade on record in terms of disaster management due to such seismic events, placing unprecedented pressure on the insurance industry in particular, and changing its view of earthquake protection. Significantly revised and updated, this second edition continues to provide a comprehensive overview of how to reduce the impact of earthquakes on people and property, and implement best practice in managing the consequences of such disasters. It also includes significant coverage of the techniques of modelling earthquake catastrophe. Each chapter deals with a separate aspect of protection, and covers a wide range of economic and social conditions, drawing on the authors' considerable personal experience and with reference to real life examples. Key features include: Recent event coverage Modern developments in the theory and practice of planning and engineering loss estimation techniques, along with new engineering techniques such as microzonation and hazard-mapping Historic buildings experience An entirely new chapter on 'Earthquakes and Finance' This valuable book provides essential reading for earthquake and structural engineers and geoscientists, as well as insurers and loss prevention specialists, risk managers and assessors involved in managing earthquake risk, urban and regional planners, and emergency management agencies.
Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.
Transportation is the lifeline of any nation, connecting people, supporting the economy, and facilitating the delivery of vital goods and services. The 9/11 attacks—and other attacks on surface transportation assets, including the bombings in Madrid, London, Moscow, and Mumbai—demonstrate the vulnerability of the open systems to disruption and the consequences of the attacks on people, property, and the economy. Now more than ever, it has become imperative for businesses operating in the transportation and transit sectors to develop comprehensive security programs accounting for both natural and man-made hazards and safeguarding people, places, and equipment—while at the same time ensuring operations continuity. Providing transportation managers with the knowledge, skills, and abilities to effectively manage the security of transportation assets, Introduction to Transportation Security examines: Basic theories of security and emergency management The integrated nature of the nation’s critical infrastructure and the threats to transportation in each surface mode Federal agencies working in emergency management and transportation security and their intelligence and response requirements and capabilities The types of disasters that have occurred in the U.S. and selected nations, and their significant economic impacts Cost-beneficial security strategies aimed at preventing catastrophic failures in each transportation mode Effective methods for organizing, testing, and evaluating transportation security across modes and professions The book covers all transportation modes and their interconnectivity—including highway, air cargo, freight and passenger rail, transit, and maritime. It presents learning objectives and discussion questions to test assimilation of the material and case studies to facilitate a practical understanding of the concepts. Introduction to Transportation Security provides essential information for students in transportation management programs and professionals charged with safeguarding the movement of assets within our interconnected transportation network.